March 29, 2001
After a brief introduction into the use of Calabi--Yau varieties in string dualities, and the role of toric geometry in that context, we review the classification of toric Calabi-Yau hypersurfaces and present some results on complete intersections. While no proof of the existence of a finite bound on the Hodge numbers is known, all new data stay inside the familiar range $h_{11}+h_{12}\le 502$.
November 20, 2023
We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...
July 12, 2015
We present a generalization of the complete intersection in products of projective space (CICY) construction of Calabi-Yau manifolds. CICY three-folds and four-folds have been studied extensively in the physics literature. Their utility stems from the fact that they can be simply described in terms of a `configuration matrix', a matrix of integers from which many of the details of the geometries can be easily extracted. The generalization we present is to allow negative integ...
January 26, 2024
One of the challenges of heterotic compactification on a Calabi-Yau threefold is to determine the physical $(\mathbf{27})^3$ Yukawa couplings of the resulting four-dimensional $\mathcal{N}=1$ theory. In general, the calculation necessitates knowledge of the Ricci-flat metric. However, in the standard embedding, which references the tangent bundle, we can compute normalized Yukawa couplings from the Weil-Petersson metric on the moduli space of complex structure deformations of...
November 28, 2023
Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...
April 24, 2018
In this work we provide a self-contained and modern introduction to some of the tools, obstacles and open questions arising in string compactifications. Techniques and current progress are illustrated in the context of smooth heterotic string compactifications to 4-dimensions. Progress is described on bounding and enumerating possible string backgrounds and their properties. We provide an overview of constructions, partial classifications, and moduli problems associated to Ca...
November 28, 2016
The connections amongst (1) quivers whose representation varieties are Calabi-Yau, (2) the combinatorics of bipartite graphs on Riemann surfaces, and (3) the geometry of mirror symmetry have engendered a rich subject at whose heart is the physics of gauge/string theories. We review the various parts of this intricate story in some depth, for a mathematical audience without assumption of any knowledge of physics, emphasizing a plethora of results residing at the intersection...
December 12, 2021
We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...
May 8, 2014
We investigate the mathematical properties of the class of Calabi-Yau four-folds recently found in [arXiv:1303.1832]. This class consists of 921,497 configuration matrices which correspond to manifolds that are described as complete intersections in products of projective spaces. For each manifold in the list, we compute the full Hodge diamond as well as additional topological invariants such as Chern classes and intersection numbers. Using this data, we conclude that there a...
May 11, 2022
In this article we present a pheno-inspired classification for the divisor topologies of the favorable Calabi Yau (CY) threefolds with $1 \leq h^{1,1}(CY) \leq 5$ arising from the four-dimensional reflexive polytopes of the Kreuzer-Skarke database. Based on some empirical observations we conjecture that the topologies of the so-called coordinate divisors can be classified into two categories: (i). $\chi_{_h}(D) \geq 1$ with Hodge numbers given by $\{h^{0,0} = 1, \, h^{1,0} = ...