August 6, 2020
Similar papers 2
October 29, 2021
The remarkable single particle control of individual ions combined with the versatility of ultracold atomic gases makes hybrid ion-atom system an exciting new platform for quantum simulation of few- and many-body quantum physics. Here, we study theoretically the properties of a mobile ion immersed in a quantum degenerate gas of fermionic atoms. Using an effective low-energy atom-ion interaction together with a well established approach that includes exactly two-body correlati...
September 13, 2023
Immersing a mobile impurity into a many-body quantum system represents a theoretically intriguing and experimentally effective way of probing its properties.In this work, we study the polaron spectral function in various environments, within the framework of Fermi-Hubbard models. Inspired by possible realizations in cold atoms and semiconductor heterostructures, we consider different configurations for the background Fermi gas, including charge density waves, multiple Fermi s...
January 5, 2017
The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block...
March 5, 2012
The dynamics of a single impurity in an environment is a fundamental problem in many-body physics. In the solid state, a well-known case is an impurity coupled to a bosonic bath, for example lattice vibrations. Here the impurity together with its accompanying lattice distortion form a new entity, a polaron. This quasiparticle plays an important role in the spectral function of high-Tc superconductors as well as in colossal-magnetoresistance in manganites. For impurities in a ...
April 25, 2016
The fastest possible collective response of a quantum many-body system is related to its excitations at the highest possible energy. In condensed-matter systems, the corresponding timescale is typically set by the Fermi energy. Taking advantage of fast and precise control of interactions between ultracold atoms, we report on the observation of ultrafast dynamics of impurities coupled to an atomic Fermi sea. Our interferometric measurements track the non-perturbative quantum e...
November 16, 2020
This study develops a novel experimental method of deducing the profile of interaction induced between impurities in a trapped gas of ultracold Fermi/Bose atoms, which are often referred to as Fermi/Bose polarons. In this method, we consider a two-body Fermi/Bose polaron collision experiment in which impurities and atoms interact only weakly. Numerical simulations of the quantum dynamics reveal the possibility to obtain information regarding the non-local induced interaction ...
November 27, 2020
We investigate the crossover of the impurity-induced dynamics, in trapped one-dimensional Bose polarons subject to radio frequency (rf) pulses of varying intensity, from an adiabatic to a diabatic regime. Utilizing adiabatic pulses for either weak repulsive or attractive impurity-medium interactions, a multitude of polaronic excitations or mode-couplings of the impurity-bath interaction with the collective breathing motion of the bosonic medium are spectrally resolved. We fin...
January 10, 2024
Charged quasiparticles dressed by the low excitations of an electron gas, constitute one of the fundamental pillars for understanding quantum many-body effects in some materials. Quantum simulation of quasiparticles arising from atom-ion hybrid systems may shed light on solid-state uncharted regimes. Here we investigate the ionic Fermi polaron consisting of a charged impurity interacting with a polarized Fermi bath. Employing state-of-the-art quantum Monte Carlo techniques ta...
October 28, 2011
We show that a single impurity embedded in a cold atom bosonic Mott insulator leads to a novel polaron that exhibits correlated motion with an effective mass and a linear size that nearly diverge at critical value of the on-site impurity-boson interaction strength. Cold atom technology can tune the polaron's properties and break up the composite particle into a deconfined impurity-hole and boson particle state at finite, controllable polaron momentum.
October 27, 2023
The physics of impurities in a bosonic quantum environment is a paradigmatic and challenging many-body problem that remains to be understood in its full complexity. Here, this problem is investigated for impurities with strong repulsive interactions based on Ramsey interferometry in a quantum degenerate gas of 39K atoms. We observe an oscillatory signal that is consistent with a quantum beat between two co-existing coherent quasiparticle states: the attractive and repulsive p...