August 8, 2020
Similar papers 3
April 3, 2022
A quantum computer can perform exponentially faster than its classical counterpart. It works on the principle of superposition. But due to the decoherence effect, the superposition of a quantum state gets destroyed by the interaction with the environment. It is a real challenge to completely isolate a quantum system to make it free of decoherence. This problem can be circumvented by the use of topological quantum phases of matter. These phases have quasiparticles excitations ...
February 24, 2011
We examine how best to design qubits for use in topological quantum computation. These qubits are topological Hilbert spaces associated with small groups of anyons. Op- erations are performed on these by exchanging the anyons. One might argue that, in order to have as many simple single qubit operations as possible, the number of anyons per group should be maximized. However, we show that there is a maximal number of particles per qubit, namely 4, and more generally a maximal...
June 28, 2023
The fusion basis of Fibonacci anyons supports unitary braid representations that can be utilized for universal quantum computation. We show a mapping between the fusion basis of three Fibonacci anyons, $\{|1\rangle, |\tau\rangle\}$, and the two length 4 Dyck paths via an isomorphism between the two dimensional braid group representations on the fusion basis and the braid group representation built on the standard $(2,2)$ Young diagrams using the Jones construction. This corre...
March 29, 2022
Topological quantum computers provide a fault-tolerant method for performing quantum computation. Topological quantum computers manipulate topological defects with exotic exchange statistics called anyons. The simplest anyon model for universal topological quantum computation is the Fibonacci anyon model, which is a non-abelian anyon system. In non-abelian anyon systems, exchanging anyons always results a unitary operations instead of a simple phase changing in abelian anyon ...
October 19, 2012
The common approach to topological quantum computation is to implement quantum gates by adiabatically moving non-Abelian anyons around each other. Here we present an alternative perspective based on the possibility of realizing the exchange (braiding) operators of anyons by adiabatically varying pairwise interactions between them rather than their positions. We analyze a system composed by four anyons whose couplings define a T-junction and we show that the braiding operator ...
May 10, 2005
In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particle-like excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world-lines in three dimensional space-time, and the corresponding quantum gates depend only on the topology of the braids formed by these world-lines. We show how to find...
February 3, 2008
We remove the need to physically transport computational anyons around each other from the implementation of computational gates in topological quantum computing. By using an anyonic analog of quantum state teleportation, we show how the braiding transformations used to generate computational gates may be produced through a series of topological charge measurements.
April 2, 2024
Fibonacci anyons provide the simplest possible model of non-Abelian fusion rules: [1] x [1] = [0] + [1]. We propose a conformal field theory construction of topological quantum registers based on Fibonacci anyons realized as quasiparticle excitations in the Z_3 parafermion fractional quantum Hall state. To this end, the results of Ardonne and Schoutens for the correlation function of n = 4 Fibonacci fields are extended to the case of arbitrary n (and 3 r electrons). Special a...
May 11, 2017
This review presents an entry-level introduction to topological quantum computation -- quantum computing with anyons. We introduce anyons at the system-independent level of anyon models and discuss the key concepts of protected fusion spaces and statistical quantum evolutions for encoding and processing quantum information. Both the encoding and the processing are inherently resilient against errors due to their topological nature, thus promising to overcome one of the main o...
March 12, 2009
Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which in principle can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with $k>2$, $k\neq4$. This work extends previous results which only applied to the case $k = 3$ (Fibonacci) and clarifies wh...