August 12, 2020
We propose a new form of the Second Law inequality that defines a tight bound for extractable work from the non-equilibrium quantum state. In classical thermodynamics, the optimal work is given by the difference of free energy, what according to the result of Skrzypczyk \emph{et al.} can be generalized for individual quantum systems. The saturation of this bound, however, requires an infinite bath and an ideal energy storage that is able to extract work from coherences. The new inequality, defined in terms of the ergotropy (rather than free energy), incorporates both of those important microscopic effects. In particular, we derive a formula for the locked energy in coherences, i.e. a quantum contribution that cannot be extracted as a work, and we find out its thermodynamic limit. Furthermore, we establish a general relation between ergotropy and free energy of the arbitrary quantum system coupled to the heat bath, what reveals that the latter is indeed the ultimate thermodynamic bound regarding work extraction, and shows that ergotropy can be interpreted as the generalization of the free energy for the finite-size heat baths.
Similar papers 1
June 9, 2020
Constraints on work extraction are fundamental to our operational understanding of the thermodynamics of both classical and quantum systems. In the quantum setting, finite-time control operations typically generate coherence in the instantaneous energy eigenbasis of the dynamical system. Thermodynamic cycles can, in principle, be designed to extract work from this non-equilibrium resource. Here, we isolate and study the quantum coherent component to the work yield in such pro...
February 14, 2004
A short introduction on quantum thermodynamics is given and three new topics are discussed: 1) Maximal work extraction from a finite quantum system. The thermodynamic prediction fails and a new, general result is derived, the ``ergotropy''. 2) In work extraction from two-temperature setups, the presence of correlations can push the effective efficiency beyond the Carnot bound. 3) In the presence of level crossing, non-slow changes may be more optimal than slow ones.
June 1, 2024
Ergotropy, as a measure for extractable work from a quantum system, has garnered significant attention due to its relevance in quantum thermodynamics and information processing. In this work, the dynamics of ergotropy will be investigated in a nonequilibrium environment for both Markovian and non-Markovian regime. In this study, both the coherent and incoherent parts of the ergotropy will be considered. It will be shown that for a non-equilibrium environment, the extraction o...
October 9, 2021
We study the modification of the second law of thermodynamics for a quantum system interacting with a reservoir regarding quantum coherence. The whole system is isolated so that neither energy nor information is lost. It is discovered that the coherence of the reservoir can serves as a useful resource allowing the system extract more energy from the reservoir; among the coherence measures, only is the relative entropy of coherence feasible to quantitatively characterize energ...
May 18, 2020
We show that it is possible to have non-zero ergotropy in the steady-states of an open quantum system consisting of qubits that are collectively coupled to a thermal bath at a finite temperature. The dynamics of our model leads the qubits into a steady-state that has coherences in the energy eigenbasis when the number of qubits in the system is more than one. We observe that even though the system do not have inverted populations, it is possible to extract work from the coher...
May 20, 2014
The second law of thermodynamics places a limitation into which states a system can evolve into. For systems in contact with a heat bath, it can be combined with the law of energy conservation, and it says that a system can only evolve into another if the free energy goes down. Recently, it's been shown that there are actually many second laws, and that it is only for large macroscopic systems that they all become equivalent to the ordinary one. These additional second laws a...
September 9, 2020
Advantages of quantum effects in several technologies, such as computation and communication, have already been well appreciated, and some devices, such as quantum computers and communication links, exhibiting superiority to their classical counterparts have been demonstrated. The close relationship between information and energy motivates us to explore if similar quantum benefits can be found in energy technologies. Investigation of performance limits for a broader class of ...
March 7, 2024
We investigate the dynamics of ergotropy in open systems under Markovian and non-Markovian evolutions. In this scenario, we begin by formulating the ergotropy of an arbitrary qubit state in terms of energy and coherence. Thus, we determine the conditions for ergotropy freezing and ergotropy sudden death as a consequence of the system-bath interaction. In order to use ergotropy as a resource for energy extraction in the form of work in an open-system scenario, we adopt the ent...
November 13, 2014
The second law of thermodynamics, formulated as an ultimate bound on the maximum extractable work, has been rigorously derived in multiple scenarios. However, the unavoidable limitations that emerge due to the lack of control on small systems are often disregarded when deriving such bounds, which is specifically important in the context of quantum thermodynamics. Here, we study the maximum extractable work with limited control over the working system and its interaction with ...
January 13, 2020
We study the role of the initial quantum coherence in coherent processes generated by an external control of some parameters by looking on the thermodynamic work done. We start by taking in exam an active state and we isolate the contribution to the ergotropy coming from the quantum coherence among the energy eigenstates. It is shown to be related to the quantum relative entropy of coherence through an inequality which involves the completely passive state connected to the in...