September 15, 2020
Modular and hierarchical community structures are pervasive in real-world complex systems. A great deal of effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of modular have included identifying fundamental limits of detectability by formally defining community structure using probabilistic generative models. Detecting hierarchical community structure introduces additional challenges alongside those inherited from community detection. Here we present a theoretical study on hierarchical community structure in networks, which has thus far not received the same rigorous attention. We address the following questions: 1) How should we define a hierarchy of communities? 2) How do we determine if there is sufficient evidence of a hierarchical structure in a network? and 3) How can we detect hierarchical structure efficiently? We approach these questions by introducing a definition of hierarchy based on the concept of stochastic externally equitable partitions and their relation to probabilistic models, such as the popular stochastic block model. We enumerate the challenges involved in detecting hierarchies and, by studying the spectral properties of hierarchical structure, present an efficient and principled method for detecting them.
Similar papers 1
October 16, 2013
Discovering and characterizing the large-scale topological features in empirical networks are crucial steps in understanding how complex systems function. However, most existing methods used to obtain the modular structure of networks suffer from serious problems, such as being oblivious to the statistical evidence supporting the discovered patterns, which results in the inability to separate actual structure from noise. In addition to this, one also observes a resolution lim...
March 23, 2014
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory "communities" in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature, and using an efficient Belief Propagation algorithm to obtain the consensus of many partitions with high mo...
October 9, 2006
One property of networks that has received comparatively little attention is hierarchy, i.e., the property of having vertices that cluster together in groups, which then join to form groups of groups, and so forth, up through all levels of organization in the network. Here, we give a precise definition of hierarchical structure, give a generic model for generating arbitrary hierarchical structure in a random graph, and describe a statistically principled way to learn the set ...
June 1, 2023
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive ($\textit{top-down}$) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative ($\textit{bottom-up}$) algorithms first identify the smallest comm...
July 11, 2008
Networks in nature possess a remarkable amount of structure. Via a series of data-driven discoveries, the cutting edge of network science has recently progressed from positing that the random graphs of mathematical graph theory might accurately describe real networks to the current viewpoint that networks in nature are highly complex and structured entities. The identification of high order structures in networks unveils insights into their functional organization. Recently, ...
November 12, 2013
Community detection in networks is a key exploratory tool with applications in a diverse set of areas, ranging from finding communities in social and biological networks to identifying link farms in the World Wide Web. The problem of finding communities or clusters in a network has received much attention from statistics, physics and computer science. However, most clustering algorithms assume knowledge of the number of clusters k. In this paper we propose to automatically de...
October 2, 2018
The problem of community detection in networks is usually formulated as finding a single partition of the network into some "correct" number of communities. We argue that it is more interpretable and in some regimes more accurate to construct a hierarchical tree of communities instead. This can be done with a simple top-down recursive partitioning algorithm, starting with a single community and separating the nodes into two communities by spectral clustering repeatedly, until...
December 17, 2007
Graph vertices are often organized into groups that seem to live fairly independently of the rest of the graph, with which they share but a few edges, whereas the relationships between group members are stronger, as shown by the large number of mutual connections. Such groups of vertices, or communities, can be considered as independent compartments of a graph. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems a...
April 8, 2005
We review and improve a recently introduced method for the detection of communities in complex networks. This method combines spectral properties of some matrices encoding the network topology, with well known hierarchical clustering techniques, and the use of the modularity parameter to quantify the goodness of any possible community subdivision. This provides one of the best available methods for the detection of community structures in complex systems.
April 27, 2004
An efficient and relatively fast algorithm for the detection of communities in complex networks is introduced. The method exploits spectral properties of the graph Laplacian-matrix combined with hierarchical-clustering techniques, and includes a procedure to maximize the ``modularity'' of the output. Its performance is compared with that of other existing methods, as applied to different well-known instances of complex networks with a community-structure: both computer-genera...