September 26, 2020
The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is usually a polynomial function of design variables, allowing us to build an equivalent non-linear semidefinite programming formulation over a semi-algebraic feasible set. This formulation is subsequently solved using the Lasserre moment-sum-of-squares hierarchy, generating a sequence of outer convex approximations that monotonically converges from below to the optimum of the original problem. Globally optimal solutions can subsequently be extracted using the Curto-Fialkow flat extension theorem. Furthermore, we show that a simple correction to the solutions of the relaxed problems establishes a feasible upper bound, thereby deriving a simple sufficient condition of global $\varepsilon$-optimality. When the original problem possesses a unique minimum, we show that this solution is found with a zero optimality gap in the limit. These theoretical findings are illustrated on several examples of topology optimization of frames and shells, for which we observe that the hierarchy converges in a finite (rather small) number of steps.
Similar papers 1
November 25, 2022
Weight optimization of frame structures with continuous cross-section parametrization is a challenging non-convex problem that has traditionally been solved by local optimization techniques. Here, we exploit its inherent semi-algebraic structure and adopt the Lasserre hierarchy of relaxations to compute the global minimizers. While this hierarchy generates a natural sequence of lower bounds, we show, under mild assumptions, how to project the relaxed solutions onto the feasib...
September 16, 2019
Optimization of frame structures is formulated as a~non-convex optimization problem, which is currently solved to local optimality. In this contribution, we investigate four optimization approaches: (i) general non-linear optimization, (ii) optimality criteria method, (iii) non-linear semidefinite programming, and (iv) polynomial optimization. We show that polynomial optimization solves the frame structure optimization to global optimality by building the (moment-sums-of-squa...
May 14, 2024
Minimizing the weight in topology optimization of frame structures under free-vibration eigenvalue constraints constitutes a challenging nonconvex polynomial optimization problem with strong singularities in the feasible set. Here, we adopt a nonlinear semidefinite programming formulation, which consists of a minimization of a linear function over a basic semi-algebraic feasible set, and provide its bilevel reformulation. This bilevel program maintains a special structure: Th...
September 24, 2018
In this article we provide an experimental algorithm that in many cases gives us an upper bound of the global infimum of a real polynomial on $\R^{n}$. It is very well known that to find the global infimum of a real polynomial on $\R^{n}$, often reduces to solve a hierarchy of positive semidefinite programs, called moment relaxations. The algorithm that we present involves to solve a series of positive semidefinite programs whose feasible set is included in the feasible set o...
November 25, 2022
Selecting the optimal material for a part designed through topology optimization is a complex problem. The shape and properties of the Pareto front plays an important role in this selection. In this paper we show that the compliance-volume fraction Pareto fronts of some topology optimization problems in linear elasticity share some useful properties. These properties provide an interesting point of view on the efficiency of topology optimization compared to other design appro...
August 8, 2024
In this survey we consider polynomial optimization problems, asking to minimize a polynomial function over a compact semialgebraic set, defined by polynomial inequalities. This models a great variety of (in general, nonlinear nonconvex) optimization problems. Various hierarchies of (lower and upper) bounds have been introduced, having the remarkable property that they converge asymptotically to the global minimum. These bounds exploit algebraic representations of positive pol...
June 9, 2017
We introduce a new approach aiming at computing approximate optimal designs for multivariate polynomial regressions on compact (semi-algebraic) design spaces. We use the moment-sum-of-squares hierarchy of semidefinite programming problems to solve numerically the approximate optimal design problem. The geometry of the design is recovered via semidefinite programming duality theory. This article shows that the hierarchy converges to the approximate optimal design as the order ...
November 16, 2020
Lasserre's moment-SOS hierarchy consists of approximating instances of the generalized moment problem (GMP) with moment relaxations and sums-of-squares (SOS) strenghtenings that boil down to convex semidefinite programming (SDP) problems. Due to the generality of the initial GMP, applications of this technology are countless, and one can cite among them the polynomial optimization problem (POP), the optimal control problem (OCP), the volume computation problem, stability sets...
November 9, 2023
We present a robust and efficient algorithm for solving large-scale three-dimensional structural topology optimization problems, in which the optimization problem is solved by a globally convergent sequential linear programming (SLP) method with a stopping criterion based on first-order optimality conditions. The SLP approach is combined with a multiresolution scheme, that employs different discretizations to deal with displacement, design and density variables, allowing high...
May 8, 2023
In this paper, we propose a topology optimization (TO) framework where the design is parameterized by a set of convex polygons. Extending feature mapping methods in TO, the representation allows for direct extraction of the geometry. In addition, the method allows one to impose geometric constraints such as feature size control directly on the polygons that are otherwise difficult to impose in density or level set based approaches. The use of polygons provides for more more v...