September 26, 2020
Similar papers 5
November 27, 2021
This paper presents a density-based topology optimization approach to design structures under self-weight load. Such loads change their magnitude and/or location as the topology optimization advances and pose several unique challenges, e.g., non-monotonous behavior of compliance objective, parasitic effects of the low-stiffness elements, and unconstrained nature of the problems. The modified SIMP material scheme is employed with the three-field density representation techniqu...
June 18, 2024
We present a new framework for solving general topology optimization (TO) problems that find an optimal material distribution within a design space to maximize the performance of a structure while satisfying design constraints. These problems involve state variables that nonlinearly depend on the design variables, with objective functions that can be convex or non-convex, and may include multiple candidate materials. The framework is designed to greatly enhance computational ...
April 18, 2014
We consider the problem of constructing an approximation of the Pareto curve associated with the multiobjective optimization problem $\min_{\mathbf{x} \in \mathbf{S}}\{ (f_1(\mathbf{x}), f_2(\mathbf{x})) \}$, where $f_1$ and $f_2$ are two conflicting polynomial criteria and $\mathbf{S} \subset \mathbb{R}^n$ is a compact basic semialgebraic set. We provide a systematic numerical scheme to approximate the Pareto curve. We start by reducing the initial problem into a scalarized ...
August 24, 2017
The paper presents a topology optimization approach that designs an optimal structure, called a self-supporting structure, which is ready to be fabricated via additive manufacturing without the usage of additional support structures. Such supports in general have to be created during the fabricating process so that the primary object can be manufactured layer by layer without collapse, which is very time-consuming and waste of material. The proposed approach resolves this p...
August 28, 2023
This paper proposes a real moment-HSOS hierarchy for complex polynomial optimization problems with real coefficients. We show that this hierarchy provides the same sequence of lower bounds as the complex analogue, yet is much cheaper to solve. In addition, we prove that global optimality is achieved when the ranks of the moment matrix and certain submatrix equal two in case that a sphere constraint is present, and as a consequence, the complex polynomial optimization problem ...
September 13, 2017
We propose general notions to deal with large scale polynomial optimization problems and demonstrate their efficiency on a key industrial problem of the twenty first century, namely the optimal power flow problem. These notions enable us to find global minimizers on instances with up to 4,500 variables and 14,500 constraints. First, we generalize the Lasserre hierarchy from real to complex to numbers in order to enhance its tractability when dealing with complex polynomial op...
June 29, 2019
In this article we develop a duality principle and concerning computational method for a structural optimization problem in elasticity. We consider the problem of finding the optimal topology for an elastic solid which minimizes its structural inner energy resulting from the action of external loads to be specified. The main results are obtained through standard tools of convex analysis and duality theory. We emphasize our algorithm do not include a filter to process the resu...
December 1, 2021
To create heterogeneous, multiscale structures with unprecedented functionalities, recent topology optimization approaches design either fully aperiodic systems or functionally graded structures, which compete in terms of design freedom and efficiency. We propose to inherit the advantages of both through a data-driven framework for multiclass functionally graded structures that mixes several families, i.e., classes, of microstructure topologies to create spatially-varying des...
June 13, 2019
Fueled by their excellent stiffness-to-weight ratio and the availability of mature manufacturing technologies, filament wound carbon fiber reinforced polymers represent ideal materials for thin-walled laminate structures. However, their strong anisotropy reduces structural resistance to wall instabilities under shear and buckling. Increasing laminate thickness degrades weight and structural efficiencies and the application of a dense internal core is often uneconomical and la...
January 8, 2021
We present a 250 line Matlab code for topology optimization for linearized buckling criteria. The code is conceived to handle stiffness, volume and Buckling Load Factors (BLFs) either as the objective function or as constraints. We use the Kreisselmeier-Steinhauser aggregation function in order to reduce multiple objectives (viz. constraints) to a single, differentiable one. Then, the problem is sequentially approximated by using MMA-like expansions and an OC-like scheme is t...