September 28, 2020
Similar papers 2
December 22, 2023
In this paper, we develop invariance-based procedures for testing and inference in high-dimensional regression models. These procedures, also known as randomization tests, provide several important advantages. First, for the global null hypothesis of significance, our test is valid in finite samples. It is also simple to implement and comes with finite-sample guarantees on statistical power. Remarkably, despite its simplicity, this testing idea has escaped the attention of ea...
November 4, 2020
This paper gives a review of concentration inequalities which are widely employed in non-asymptotical analyses of mathematical statistics in a wide range of settings, from distribution-free to distribution-dependent, from sub-Gaussian to sub-exponential, sub-Gamma, and sub-Weibull random variables, and from the mean to the maximum concentration. This review provides results in these settings with some fresh new results. Given the increasing popularity of high-dimensional data...
July 14, 2021
In this paper we analyze, for a model of linear regression with gaussian covariates, the performance of a Bayesian estimator given by the mean of a log-concave posterior distribution with gaussian prior, in the high-dimensional limit where the number of samples and the covariates' dimension are large and proportional. Although the high-dimensional analysis of Bayesian estimators has been previously studied for Bayesian-optimal linear regression where the correct posterior is ...
September 30, 2013
It has been over 200 years since Gauss's and Legendre's famous priority dispute on who discovered the method of least squares. Nevertheless, we argue that the normal equations are still relevant in many facets of modern statistics, particularly in the domain of high-dimensional inference. Even today, we are still learning new things about the law of large numbers, first described in Bernoulli's Ars Conjectandi 300 years ago, as it applies to high dimensional inference. The ot...
September 16, 2011
Although the standard formulations of prediction problems involve fully-observed and noiseless data drawn in an i.i.d. manner, many applications involve noisy and/or missing data, possibly involving dependence, as well. We study these issues in the context of high-dimensional sparse linear regression, and propose novel estimators for the cases of noisy, missing and/or dependent data. Many standard approaches to noisy or missing data, such as those using the EM algorithm, lead...
October 12, 2011
The purpose of this paper is to propose methodologies for statistical inference of low-dimensional parameters with high-dimensional data. We focus on constructing confidence intervals for individual coefficients and linear combinations of several of them in a linear regression model, although our ideas are applicable in a much broad context. The theoretical results presented here provide sufficient conditions for the asymptotic normality of the proposed estimators along with ...
September 19, 2022
In this paper, we present a new and effective simulation-based approach to conduct both finite- and large-sample inference for high-dimensional linear regression models. This approach is developed under the so-called repro samples framework, in which we conduct statistical inference by creating and studying the behavior of artificial samples that are obtained by mimicking the sampling mechanism of the data. We obtain confidence sets for (a) the true model corresponding to the...
March 30, 2020
We study general singular value shrinkage estimators in high-dimensional regression and classification, when the number of features and the sample size both grow proportionally to infinity. We allow models with general covariance matrices that include a large class of data generating distributions. As far as the implications of our results are concerned, we find exact asymptotic formulas for both the training and test errors in regression models fitted by gradient descent, wh...
August 27, 2023
These lecture notes provide an overview of existing methodologies and recent developments for estimation and inference with high dimensional time series regression models. First, we present main limit theory results for high dimensional dependent data which is relevant to covariance matrix structures as well as to dependent time series sequences. Second, we present main aspects of the asymptotic theory related to time series regression models with many covariates. Third, we d...
December 8, 2024
This review article provides an overview of random matrix theory (RMT) with a focus on its growing impact on the formulation and inference of statistical models and methodologies. Emphasizing applications within high-dimensional statistics, we explore key theoretical results from RMT and their role in addressing challenges associated with high-dimensional data. The discussion highlights how advances in RMT have significantly influenced the development of statistical methods, ...