December 8, 2020
Similar papers 5
April 21, 2022
We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics...
July 27, 2005
The derivative expnsion in the context of IIB string scattering compactified on non-trivial K3 and other Calabi-Yau manifolds is formulated. The scattering data in terms of automorphic functions can be inverted to find the these metrics. The solutions are parameterized by the moduli information, and the metrics may be found to any desired accuracy in derivatives. Metric information to low orders in derivatives allows for a counting of curves inside the manifold; in addition, ...
February 8, 2007
These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds. The last section provides a short introduction to toric geometry, aimed at constructing Calabi-Yau manifolds in two different ways; as hypersurfaces in toric varieties and as local toric Calabi-Yau threefolds. These lecture notes supplem...
December 20, 2007
We extend previous computations of Calabi-Yau metrics on projective hypersurfaces to free quotients, complete intersections, and free quotients of complete intersections. In particular, we construct these metrics on generic quintics, four-generation quotients of the quintic, Schoen Calabi-Yau complete intersections and the quotient of a Schoen manifold with Z_3 x Z_3 fundamental group that was previously used to construct a heterotic standard model. Various numerical investig...
May 22, 2018
We show that non-trivial SU(3) structures can be constructed on large classes of Calabi-Yau three-folds. Specifically, we focus on Calabi-Yau three-folds constructed as complete intersections in products of projective spaces, although we expect similar methods to apply to other constructions and also to Calabi-Yau four-folds. Among the wide range of possible SU(3) structures we find Strominger-Hull systems, suitable for heterotic or type II string compactifications, on all co...
July 9, 2009
We introduce a simple and very fast algorithm that computes Weil-Petersson metrics on moduli spaces of polarized Calabi-Yau manifolds. Also, by using Donaldson's quantization link between the infinite and finite dimensional G.I.T quotients that describe moduli spaces of varieties, we define a natural sequence of Kaehler metrics. We prove that the sequence converges to the Weil-Petersson metric. We also develop an algorithm that numerically approximates such metrics, and hence...
December 11, 2006
We develop numerical methods for approximating Ricci flat metrics on Calabi-Yau hypersurfaces in projective spaces. Our approach is based on finding balanced metrics, and builds on recent theoretical work by Donaldson. We illustrate our methods in detail for a one parameter family of quintics. We also suggest several ways to extend our results.
June 8, 2017
We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that ev...
November 15, 2018
We provide the first estimate of the number of fine, regular, star triangulations of the four-dimensional reflexive polytopes, as classified by Kreuzer and Skarke (KS). This provides an upper bound on the number of Calabi-Yau threefold hypersurfaces in toric varieties. The estimate is performed with deep learning, specifically the novel equation learner (EQL) architecture. We demonstrate that EQL networks accurately predict numbers of triangulations far beyond the $h^{1,1}$ t...
March 22, 2023
We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...