January 15, 2021
We review, for a general audience, a variety of recent experiments on extracting structure from machine-learning mathematical data that have been compiled over the years. Focusing on supervised machine-learning on labeled data from different fields ranging from geometry to representation theory, from combinatorics to number theory, we present a comparative study of the accuracies on different problems. The paradigm should be useful for conjecture formulation, finding more efficient methods of computation, as well as probing into certain hierarchy of structures in mathematics.
Similar papers 1
March 22, 2023
We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...
May 2, 2019
We employ techniques of machine-learning, exemplified by support vector machines and neural classifiers, to initiate the study of whether AI can "learn" algebraic structures. Using finite groups and finite rings as a concrete playground, we find that questions such as identification of simple groups by "looking" at the Cayley table or correctly matching addition and multiplication tables for finite rings can, at least for structures of small size, be performed by the AI, even...
February 12, 2022
We review the recent programme of using machine-learning to explore the landscape of mathematical problems. With this paradigm as a model for human intuition - complementary to and in contrast with the more formalistic approach of automated theorem proving - we highlight some experiments on how AI helps with conjecture formulation, pattern recognition and computation.
June 28, 2018
While there has been some discussion on how Symbolic Computation could be used for AI there is little literature on applications in the other direction. However, recent results for quantifier elimination suggest that, given enough example problems, there is scope for machine learning tools like Support Vector Machines to improve the performance of Computer Algebra Systems. We survey the authors own work and similar applications for other mathematical software. It may seem t...
December 22, 2009
The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we ad...
June 12, 2023
Conjectures have historically played an important role in the development of pure mathematics. We propose a systematic approach to finding abstract patterns in mathematical data, in order to generate conjectures about mathematical inequalities, using machine intelligence. We focus on strict inequalities of type f < g and associate them with a vector space. By geometerising this space, which we refer to as a conjecture space, we prove that this space is isomorphic to a Banach ...
June 22, 2023
In the words of the esteemed mathematician Paul Erd\"os, the mathematician's task is to \emph{prove and conjecture}. These two processes form the bedrock of all mathematical endeavours, and in the recent years, the mathematical community has increasingly sought the assistance of computers to bolster these tasks. This paper is a testament to that pursuit; it presents a robust framework enabling a computer to automatically generate conjectures - particularly those conjectures t...
September 16, 2018
The information technology explosion has dramatically increased the application of new mathematical ideas and has led to an increasing use of mathematics across a wide range of fields that have been traditionally labeled "pure" or "theoretical". There is a critical need for tools to make these concepts readily accessible to a broader community. This paper details the creation of visual representations of mathematical structures commonly found in pure mathematics to enable bot...
December 8, 2023
In this work we employ machine learning to understand structured mathematical data involving finite groups and derive a theorem about necessary properties of generators of finite simple groups. We create a database of all 2-generated subgroups of the symmetric group on n-objects and conduct a classification of finite simple groups among them using shallow feed-forward neural networks. We show that this neural network classifier can decipher the property of simplicity with var...
July 12, 2024
The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the al...