ID: 2101.08843

Dessins d'Enfants, Seiberg-Witten Curves and Conformal Blocks

January 21, 2021

View on ArXiv
Jiakang Bao, Omar Foda, Yang-Hui He, Edward Hirst, James Read, Yan Xiao, Futoshi Yagi
High Energy Physics - Theory
Mathematics
Mathematical Physics

We show how to map Grothendieck's dessins d'enfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d $\mathcal{N}=2$ supersymmetric instanton partition functions and 2d Virasoro conformal blocks. We explicitly demonstrate the 6 trivalent dessins with 4 punctures on the sphere. We find that the parametrizations obtained from a dessin should be related by certain duality for gauge theories. Then we will discuss that some dessins could correspond to conformal blocks satisfying certain rules in different minimal models.

Similar papers 1

Sujay K. Ashok, Freddy Cachazo, Eleonora Dell'Aquila
High Energy Physics - Theory

We consider N=2 supersymmetric gauge theories perturbed by tree level superpotential terms near isolated singular points in the Coulomb moduli space. We identify the Seiberg-Witten curve at these points with polynomial equations used to construct what Grothendieck called "dessins d'enfants" or "children's drawings" on the Riemann sphere. From a mathematical point of view, the dessins are important because the absolute Galois group Gal(\bar{Q}/Q) acts faithfully on them. We ar...

Yang-Hui He, James Read
Algebraic Geometry

We study Grothendieck's dessins d'enfants in the context of the $\mathcal{N}=2$ supersymmetric gauge theories in $\left(3+1\right)$ dimensions with product $SU\left(2\right)$ gauge groups which have recently been considered by Gaiotto et al. We identify the precise context in which dessins arise in these theories: they are the so-called ribbon graphs of such theories at certain isolated points in the Coulomb branch of the moduli space. With this point in mind, we highlight co...

Sownak Bose, James Gundry, Yang-Hui He
Algebraic Geometry

Dessin d'Enfants on elliptic curves are a powerful way of encoding doubly-periodic brane tilings, and thus, of four-dimensional supersymmetric gauge theories whose vacuum moduli space is toric, providing an interesting interplay between physics, geometry, combinatorics and number theory. We discuss and provide a partial classification of the situation in genera other than one by computing explicit Belyi pairs associated to the gauge theories. Important also is the role of the...

Vladimir Mitev, Elli Pomoni
High Energy Physics - Theory

This is the first in a series of papers on the search for the 2D CFT description of a large class of 4D $\mathcal{N} = 1$ gauge theories. Here, we identify the 2D CFT symmetry algebra and its representations, namely the conformal blocks of the Virasoro/W-algebra, that underlie the 2D theory and reproduce the Seiberg-Witten curves of the $\mathcal{N} = 1$ gauge theories. We find that the blocks corresponding to the SU(N) $\mathcal{S}_k$ gauge theories involve fields in certain...

Jian Zhou
Mathematical Physics
Exactly Solvable and Integra...

In this paper we show that counting Grothendieck's dessins d'enfants is universal in the sense that some other enumerative problems are either special cases or directly related to it. Such results provide concrete examples that support a proposal made in the paper to study various dualities from the point of view of group actions on the moduli space of theories. Connections to differential equations of hypergeometric type can be made transparent from this approach, suggesting...

A. Marshakov
High Energy Physics - Theory

This talk gives an introduction into the subject of Seiberg-Witten curves and their relation to integrable systems. We discuss some motivations and origins of this relation and consider explicit construction of various families of Seiberg-Witten curves in terms of corresponding integrable models.

Yang-Hui He
Algebraic Geometry
Mathematical Physics
Number Theory

The connections amongst (1) quivers whose representation varieties are Calabi-Yau, (2) the combinatorics of bipartite graphs on Riemann surfaces, and (3) the geometry of mirror symmetry have engendered a rich subject at whose heart is the physics of gauge/string theories. We review the various parts of this intricate story in some depth, for a mathematical audience without assumption of any knowledge of physics, emphasizing a plethora of results residing at the intersection...

Giulio Bonelli, Kazunobu Maruyoshi, ... , Yagi Futoshi
High Energy Physics - Theory

We study generalized matrix models corresponding to n-point Virasoro conformal blocks on Riemann surfaces with arbitrary genus g. Upon AGT correspondence, these describe four dimensional N=2 SU(2)^{n+3g-3} gauge theories with generalized quiver diagrams. We obtain the generalized matrix models from the perturbative evaluation of the Liouville correlation functions and verify the consistency of the description with respect to degenerations of the Riemann surface. Moreover, we ...

Charles Doran, Kevin Iga, Jordan Kostiuk, ... , Mendez-Diez Stefan
High Energy Physics - Theory

The problem of classifying off-shell representations of the $N$-extended one-dimensional super Poincar\'{e} algebra is closely related to the study of a class of decorated $N$-regular, $N$-edge colored bipartite graphs known as {\em Adinkras}. In this paper we {\em canonically} realize these graphs as Grothendieck ``dessins d'enfants,'' or Belyi curves uniformized by certain normal torsion-free subgroups of the $(N,N,2)$-triangle group. We exhibit an explicit algebraic model ...

Ta-Sheng Tai
Mathematical Physics

Through AGT conjecture, we show how triality observed in \N=2 SU(2) N_f=4 QCD can be interpreted geometrically as the interplay among six of Kummer's twenty-four solutions belonging to one fixed Riemann scheme in the context of hypergeometric differential equations. We also stress that our presentation is different from the usual crossing symmetry of Liouville conformal blocks, which is described by the connection coefficient in the case of hypergeometric functions. Besides, ...