February 5, 2021

Francesco Caravelli, Forrest C. Sheldon, Fabio L. Traversa

Simple dynamical models can produce intricate behaviors in large networks. These behaviors can often be observed in a wide variety of physical systems captured by the network of interactions. Here we describe a phenomenon where the increase of dimensions self-consistently generates a force field due to dynamical instabilities. This can be understood as an unstable ("rumbling") tunneling mechanism between minima in an effective potential. We dub this collective and nonperturbative effect a "Lyapunov force" which steers the system towards the global minimum of the potential function, even if the full system has a constellation of equilibrium points growing exponentially with the system size. The system we study has a simple mapping to a flow network, equivalent to current-driven memristors. The mechanism is appealing for its physical relevance in nanoscale physics, and to possible applications in optimization, novel Monte Carlo schemes and machine learning.

Similar papers 1

85% Match

Forrest C. Sheldon, Francesco Caravelli, Carleton Coffrin

We introduce a Lyapunov function for the dynamics of memristive circuits, and compare the effectiveness of memristors in minimizing the function to widely used optimization software. We study in particular three classes of problems which can be directly embedded in a circuit topology, and show that memristors effectively attempt at (quickly) extremizing these functionals.

February 25, 2024

84% Match

Frank Barrows, Forrest C. Sheldon, Francesco Caravelli

Networks with memristive devices are a potential basis for the next generation of computing devices. They are also an important model system for basic science, from modeling nanoscale conductivity to providing insight into the information-processing of neurons. The resistance in a memristive device depends on the history of the applied bias and thus displays a type of memory. The interplay of this memory with the dynamic properties of the network can give rise to new behavior...

June 22, 2023

84% Match

Ruomin Zhu, Jason K. Eshraghian, Zdenka Kuncic

Memristive reservoirs draw inspiration from a novel class of neuromorphic hardware known as nanowire networks. These systems display emergent brain-like dynamics, with optimal performance demonstrated at dynamical phase transitions. In these networks, a limited number of electrodes are available to modulate system dynamics, in contrast to the global controllability offered by neuromorphic hardware through random access memories. We demonstrate that the learn-to-learn framewor...

January 24, 2023

84% Match

Francesco Caravelli, Gianluca Milano, ... , Kuncic Zdenka

Biological neuronal networks are characterized by nonlinear interactions and complex connectivity. Given the growing impetus to build neuromorphic computers, understanding physical devices that exhibit structures and functionalities similar to biological neural networks is an important step toward this goal. Self-organizing circuits of nanodevices are at the forefront of the research in neuromorphic computing, as their behavior mimics synaptic plasticity features of biologica...

November 15, 2017

84% Match

Francesco Caravelli

The interest in memristors has risen due to their possible application both as memory units and as computational devices in combination with CMOS. This is in part due to their nonlinear dynamics, and a strong dependence on the circuit topology. We provide evidence that also purely memristive circuits can be employed for computational purposes. In the present paper we show that a polynomial Lyapunov function in the memory parameters exists for the case of DC controlled memrist...

84% Match

Francesco Caravelli, Paolo Barucca

We construct an exactly solvable circuit of interacting memristors and study its dynamics and fixed points. This simple circuit model interpolates between decoupled circuits of isolated memristors, and memristors in series, for which exact fixed points can be obtained. We introduce a Lyapunov functional that is found to be minimized along the non-equilibrium dynamics and which resembles a long-range Ising Hamiltonian with non-linear self-interactions. We use the Lyapunov func...

November 14, 2014

83% Match

Sergio Boixo, Vadim N. Smelyanskiy, Alireza Shabani, Sergei V. Isakov, Mark Dykman, Vasil S. Denchev, Mohammad Amin, Anatoly Smirnov, ... , Neven Hartmut

Quantum tunneling is a phenomenon in which a quantum state traverses energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We develop a theoretical model based on a NIBA Quantum Master Equation to describe the multiqubit dissipative tun...

83% Match

Francesco Caravelli

We discuss the properties of the dynamics of purely memristive circuits using a recently derived consistent equation for the internal memory variables of the involved memristors. In particular, we show that the number of independent memory states in a memristive circuit is constrained by the circuit conservation laws, and that the dynamics preserves these symmetries by means of a projection on the physical subspace. Moreover, we discuss other symmetries of the dynamics under ...

October 8, 2018

83% Match

Forrest Sheldon, Fabio L. Traversa, Ventra Massimiliano Di

Recent work on quantum annealing has emphasized the role of collective behavior in solving optimization problems. By enabling transitions of clusters of variables, such solvers are able to navigate their state space and locate solutions more efficiently despite having only local connections between elements. However, collective behavior is not exclusive to quantum annealers, and classical solvers that display collective dynamics should also possess an advantage in navigating ...

June 12, 2020

83% Match

Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala, ... , Zdeborová Lenka

Despite the widespread use of gradient-based algorithms for optimizing high-dimensional non-convex functions, understanding their ability of finding good minima instead of being trapped in spurious ones remains to a large extent an open problem. Here we focus on gradient flow dynamics for phase retrieval from random measurements. When the ratio of the number of measurements over the input dimension is small the dynamics remains trapped in spurious minima with large basins of ...