March 3, 2021
Similar papers 4
March 11, 2023
This article gives an overview and a perspective of recent theoretical proposals and their experimental implementations in the field of quantum machine learning. Without an aim to being exhaustive, the article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors, and their experimental realizations in the platforms of quantum photonics and superconducting circuits. The field of quantum machine learning could ...
June 9, 2021
The core of quantum machine learning is to devise quantum models with good trainability and low generalization error bound than their classical counterparts to ensure better reliability and interpretability. Recent studies confirmed that quantum neural networks (QNNs) have the ability to achieve this goal on specific datasets. With this regard, it is of great importance to understand whether these advantages are still preserved on real-world tasks. Through systematic numerica...
July 20, 2021
Quantum machine learning promises great speedups over classical algorithms, but it often requires repeated computations to achieve a desired level of accuracy for its point estimates. Bayesian learning focuses more on sampling from posterior distributions than on point estimation, thus it might be more forgiving in the face of additional quantum noise. We propose a quantum algorithm for Bayesian neural network inference, drawing on recent advances in quantum deep learning, an...
January 21, 2004
According to the statistical interpretation of quantum theory, quantum computers form a distinguished class of probabilistic machines (PMs) by encoding n qubits in 2n pbits (random binary variables). This raises the possibility of a large-scale quantum computing using PMs, especially with neural networks which have the innate capability for probabilistic information processing. Restricting ourselves to a particular model, we construct and numerically examine the performance o...
July 3, 2023
The past decade has witnessed significant advancements in quantum hardware, encompassing improvements in speed, qubit quantity, and quantum volume-a metric defining the maximum size of a quantum circuit effectively implementable on near-term quantum devices. This progress has led to a surge in Quantum Machine Learning (QML) applications on real hardware, aiming to achieve quantum advantage over classical approaches. This survey focuses on selected supervised and unsupervised ...
June 26, 2020
With the increased focus on quantum circuit learning for near-term applications on quantum devices, in conjunction with unique challenges presented by cost function landscapes of parametrized quantum circuits, strategies for effective training are becoming increasingly important. In order to ameliorate some of these challenges, we investigate a layerwise learning strategy for parametrized quantum circuits. The circuit depth is incrementally grown during optimization, and only...
March 19, 2021
Graph structures are ubiquitous throughout the natural sciences. Here we consider graph-structured quantum data and describe how to carry out its quantum machine learning via quantum neural networks. In particular, we consider training data in the form of pairs of input and output quantum states associated with the vertices of a graph, together with edges encoding correlations between the vertices. We explain how to systematically exploit this additional graph structure to im...
September 21, 2023
Quantum noise is currently limiting efficient quantum information processing and computation. In this work, we consider the tasks of reconstructing and classifying quantum states corrupted by the action of an unknown noisy channel using classical feedforward neural networks. By framing reconstruction as a regression problem, we show how such an approach can be used to recover with fidelities exceeding 99% the noiseless density matrices of quantum states of up to three qubits ...
May 11, 2022
In the current noisy intermediate-scale quantum (NISQ) era, quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers. In quantum machine learning, the gates of a quantum circuit are parametrized, and the parameters are tuned via classical optimization based on data and on measurements of the outputs of the circuit. Parametrized quantum circuits (PQCs) can efficiently address combinatorial optimization problems, implement probabilisti...
November 5, 2021
In this thesis, we investigate whether quantum algorithms can be used in the field of machine learning for both long and near term quantum computers. We will first recall the fundamentals of machine learning and quantum computing and then describe more precisely how to link them through linear algebra: we introduce quantum algorithms to efficiently solve tasks such as matrix product or distance estimation. These results are then used to develop new quantum algorithms for unsu...