March 31, 2021
Similar papers 4
June 9, 2021
The core of quantum machine learning is to devise quantum models with good trainability and low generalization error bound than their classical counterparts to ensure better reliability and interpretability. Recent studies confirmed that quantum neural networks (QNNs) have the ability to achieve this goal on specific datasets. With this regard, it is of great importance to understand whether these advantages are still preserved on real-world tasks. Through systematic numerica...
February 8, 2024
The rapid development of quantum computers promises transformative impacts across diverse fields of science and technology. Quantum neural networks (QNNs), as a forefront application, hold substantial potential. Despite the multitude of proposed models in the literature, persistent challenges, notably the vanishing gradient (VG) and cost function concentration (CFC) problems, impede their widespread success. In this study, we introduce a novel approach to quantum neural netwo...
June 6, 2022
Machine learning has achieved dramatic success over the past decade, with applications ranging from face recognition to natural language processing. Meanwhile, rapid progress has been made in the field of quantum computation including developing both powerful quantum algorithms and advanced quantum devices. The interplay between machine learning and quantum physics holds the intriguing potential for bringing practical applications to the modern society. Here, we focus on quan...
January 26, 2019
Deep learning is a modern approach to realize artificial intelligence. Many frameworks exist to implement the machine learning task; however, performance is limited by computing resources. Using a quantum computer to accelerate training is a promising approach. The variational quantum circuit (VQC) has gained a great deal of attention because it can be run on near-term quantum computers. In this paper, we establish a new framework that merges traditional machine learning task...
March 10, 2023
Quantum machine learning has established as an interdisciplinary field to overcome limitations of classical machine learning and neural networks. This is a field of research which can prove that quantum computers are able to solve problems with complex correlations between inputs that can be hard for classical computers. This suggests that learning models made on quantum computers may be more powerful for applications, potentially faster computation and better generalization ...
May 1, 2024
Variational quantum computing offers a flexible computational paradigm with applications in diverse areas. However, a key obstacle to realizing their potential is the Barren Plateau (BP) phenomenon. When a model exhibits a BP, its parameter optimization landscape becomes exponentially flat and featureless as the problem size increases. Importantly, all the moving pieces of an algorithm -- choices of ansatz, initial state, observable, loss function and hardware noise -- can le...
February 14, 2024
In this paper, we present a novel framework for enhancing the performance of Quanvolutional Neural Networks (QuNNs) by introducing trainable quanvolutional layers and addressing the critical challenges associated with them. Traditional quanvolutional layers, although beneficial for feature extraction, have largely been static, offering limited adaptability. Unlike state-of-the-art, our research overcomes this limitation by enabling training within these layers, significantly ...
January 12, 2016
Training artificial neural networks requires a tedious empirical evaluation to determine a suitable neural network architecture. To avoid this empirical process several techniques have been proposed to automatise the architecture selection process. In this paper, we propose a method to perform parameter and architecture selection for a quantum weightless neural network (qWNN). The architecture selection is performed through the learning procedure of a qWNN with a learning alg...
October 27, 2021
A new paradigm for data science has emerged, with quantum data, quantum models, and quantum computational devices. This field, called Quantum Machine Learning (QML), aims to achieve a speedup over traditional machine learning for data analysis. However, its success usually hinges on efficiently training the parameters in quantum neural networks, and the field of QML is still lacking theoretical scaling results for their trainability. Some trainability results have been proven...
October 23, 2019
The classical simulation of quantum systems typically requires exponential resources. Recently, the introduction of a machine learning-based wavefunction ansatz has led to the ability to solve the quantum many-body problem in regimes that had previously been intractable for existing exact numerical methods. Here, we demonstrate the utility of the variational representation of quantum states based on artificial neural networks for performing quantum optimization. We show empir...