April 11, 2021
Similar papers 5
January 26, 2021
Multilingual pretrained language models have demonstrated remarkable zero-shot cross-lingual transfer capabilities. Such transfer emerges by fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning. Despite promising results, we still lack a proper understanding of the source of this transfer. Using a novel layer ablation technique and analyses of the model's internal representations, we show that multilingual BE...
October 23, 2020
Clustering token-level contextualized word representations produces output that shares many similarities with topic models for English text collections. Unlike clusterings of vocabulary-level word embeddings, the resulting models more naturally capture polysemy and can be used as a way of organizing documents. We evaluate token clusterings trained from several different output layers of popular contextualized language models. We find that BERT and GPT-2 produce high quality c...
November 15, 2022
This paper presents M3L-Contrast -- a novel multimodal multilingual (M3L) neural topic model for comparable data that maps texts from multiple languages and images into a shared topic space. Our model is trained jointly on texts and images and takes advantage of pretrained document and image embeddings to abstract the complexities between different languages and modalities. As a multilingual topic model, it produces aligned language-specific topics and as multimodal model, it...
October 22, 2022
Pre-trained multilingual language models show significant performance gains for zero-shot cross-lingual model transfer on a wide range of natural language understanding (NLU) tasks. Previously, for zero-shot cross-lingual evaluation, pre-trained models are only fine-tuned on English data and tested on a variety of target languages. In this paper, we do cross-lingual evaluation on various NLU tasks (sentence classification, sequence labeling, question answering) using prompt-t...
March 24, 2024
Topic modelling, as a well-established unsupervised technique, has found extensive use in automatically detecting significant topics within a corpus of documents. However, classic topic modelling approaches (e.g., LDA) have certain drawbacks, such as the lack of semantic understanding and the presence of overlapping topics. In this work, we investigate the untapped potential of large language models (LLMs) as an alternative for uncovering the underlying topics within extensiv...
May 6, 2021
The introduction of pretrained cross-lingual language models brought decisive improvements to multilingual NLP tasks. However, the lack of labelled task data necessitates a variety of methods aiming to close the gap to high-resource languages. Zero-shot methods in particular, often use translated task data as a training signal to bridge the performance gap between the source and target language(s). We introduce XeroAlign, a simple method for task-specific alignment of cross-l...
December 19, 2022
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstrea...
November 28, 2021
Zero-shot cross-lingual transfer is an important feature in modern NLP models and architectures to support low-resource languages. In this work, We study zero-shot cross-lingual transfer from English to French and German under Multi-Label Text Classification, where we train a classifier using English training set, and we test using French and German test sets. We extend EURLEX57K dataset, the English dataset for topic classification of legal documents, with French and German ...
October 6, 2020
Cross-lingual text classification alleviates the need for manually labeled documents in a target language by leveraging labeled documents from other languages. Existing approaches for transferring supervision across languages require expensive cross-lingual resources, such as parallel corpora, while less expensive cross-lingual representation learning approaches train classifiers without target labeled documents. In this work, we propose a cross-lingual teacher-student method...
October 13, 2020
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model is evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language d...