ID: 2106.03695

Neurons on Amoebae

June 7, 2021

View on ArXiv

Similar papers 2

Applying machine learning to the Calabi-Yau orientifolds with string vacua

December 9, 2021

81% Match
Xin Gao, Hao Zou
High Energy Physics - Theory

We use the machine learning technique to search the polytope which can result in an orientifold Calabi-Yau hypersurface and the "naive Type IIB string vacua". We show that neural networks can be trained to give a high accuracy for classifying the orientifold property and vacua based on the newly generated orientifold Calabi-Yau database with $h^{1,1}(X) \leq 6$ arXiv:2111.03078. This indicates the orientifold symmetry may already be encoded in the polytope structure. In the e...

Find SimilarView on arXiv

Amoebas of algebraic varieties and tropical geometry

February 29, 2004

81% Match
Grigory Mikhalkin
Algebraic Geometry
Geometric Topology
Symplectic Geometry

This survey consists of two parts. Part 1 is devoted to amoebas. These are images of algebraic subvarieties in the complex torus under the logarithmic moment map. The amoebas have essentially piecewise-linear shape if viewed at large. Furthermore, they degenerate to certain piecewise-linear objects called tropical varieties whose behavior is governed by algebraic geometry over the so-called tropical semifield. Geometric aspects of tropical algebraic geometry are the content o...

Find SimilarView on arXiv

Unsupervised Machine Learning Techniques for Exploring Tropical Coamoeba, Brane Tilings and Seiberg Duality

September 11, 2023

81% Match
Rak-Kyeong Seong
Machine Learning
Algebraic Geometry
Mathematical Physics

We introduce unsupervised machine learning techniques in order to identify toric phases of 4d N=1 supersymmetric gauge theories corresponding to the same toric Calabi-Yau 3-fold. These 4d N=1 supersymmetric gauge theories are worldvolume theories of a D3-brane probing a toric Calabi-Yau 3-fold and are realized in terms of a Type IIB brane configuration known as a brane tiling. It corresponds to the skeleton graph of the coamoeba projection of the mirror curve associated to th...

Find SimilarView on arXiv

Machine Learning on generalized Complete Intersection Calabi-Yau Manifolds

September 21, 2022

81% Match
Wei Cui, Xin Gao, Juntao Wang
Machine Learning

Generalized Complete Intersection Calabi-Yau Manifold (gCICY) is a new construction of Calabi-Yau manifolds established recently. However, the generation of new gCICYs using standard algebraic method is very laborious. Due to this complexity, the number of gCICYs and their classification still remain unknown. In this paper, we try to make some progress in this direction using neural network. The results showed that our trained models can have a high precision on the existing ...

Find SimilarView on arXiv

(K)not machine learning

January 21, 2022

81% Match
Jessica Craven, Mark Hughes, ... , Kar Arjun
Geometric Topology

We review recent efforts to machine learn relations between knot invariants. Because these knot invariants have meaning in physics, we explore aspects of Chern-Simons theory and higher dimensional gauge theories. The goal of this work is to translate numerical experiments with Big Data to new analytic results.

Find SimilarView on arXiv
Jiakang Bao, Yang-Hui He, Edward Hirst, Johannes Hofscheier, ... , Majumder Suvajit
Algebraic Geometry

We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ${\sim}1$ mean absolute error, whilst classifiers predict dimension and Gorenstein index to $>90\%$ accuracy with ${\sim}0.5\%$ standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding $95\%$. Neura...

Machine learning for complete intersection Calabi-Yau manifolds: a methodological study

July 30, 2020

81% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...

Find SimilarView on arXiv

Machine Learning String Standard Models

March 30, 2020

81% Match
Rehan Deen, Yang-Hui He, ... , Lukas Andre
Algebraic Geometry
Machine Learning

We study machine learning of phenomenologically relevant properties of string compactifications, which arise in the context of heterotic line bundle models. Both supervised and unsupervised learning are considered. We find that, for a fixed compactification manifold, relatively small neural networks are capable of distinguishing consistent line bundle models with the correct gauge group and the correct chiral asymmetry from random models without these properties. The same dis...

Find SimilarView on arXiv

Evolving neural networks with genetic algorithms to study the String Landscape

June 21, 2017

81% Match
Fabian Ruehle
High Energy Physics - Theory

We study possible applications of artificial neural networks to examine the string landscape. Since the field of application is rather versatile, we propose to dynamically evolve these networks via genetic algorithms. This means that we start from basic building blocks and combine them such that the neural network performs best for the application we are interested in. We study three areas in which neural networks can be applied: to classify models according to a fixed set of...

Find SimilarView on arXiv
Yang-Hui He, Juan Manuel Pérez Ipiña
Machine Learning

On the long-established classification problems in general relativity we take a novel perspective by adopting fruitful techniques from machine learning and modern data-science. In particular, we model Petrov's classification of spacetimes, and show that a feed-forward neural network can achieve high degree of success. We also show how data visualization techniques with dimensionality reduction can help analyze the underlying patterns in the structure of the different types of...