ID: 2107.01720

Exact solution of an integrable non-equilibrium particle system

July 4, 2021

View on ArXiv
Rouven Frassek, Cristian Giardinà
Condensed Matter
High Energy Physics - Theory
Mathematics
Nonlinear Sciences
Statistical Mechanics
Mathematical Physics
Probability
Exactly Solvable and Integra...

We consider the integrable family of symmetric boundary-driven interacting particle systems that arise from the non-compact XXX Heisenberg model in one dimension with open boundaries. In contrast to the well-known symmetric exclusion process, the number of particles at each site is unbounded. We show that a finite chain of $N$ sites connected at its ends to two reservoirs can be solved exactly, i.e. the factorial moments of the non-equilibrium steady-state can be written in closed form for each $N$. The solution relies on probabilistic arguments and techniques inspired by integrable systems. It is obtained in two steps: i) the introduction of a dual absorbing process reducing the problem to a finite number of particles; ii) the solution of the dual dynamics exploiting a symmetry obtained from the Quantum Inverse Scattering Method. Long-range correlations are computed in the finite-volume system. The exact solution allows to prove by a direct computation that, in the thermodynamic limit, the system approaches local equilibrium. A by-product of the solution is the algebraic construction of a direct mapping between the non-equilibrium steady state and the equilibrium reversible measure.

Similar papers 1