July 19, 2021
The partitions of the integers can be expressed exactly in an iterative and closed-form expression. This equation is derived from distributing the partitions of a number in a network that locates each partition in a unique and orderly position. From this representation an iterative equation for the function of the number of divisors was derivated. Also, the number of divisors of a integer can be found from a new function called the trace of the number n, trace(n). As a final preliminary result, using the Bressoud-Subbarao theorem, we obtain a new iterative representation of the sum of divisor function. Using this theorem it is possible to derive an iterative equation for any divisor function and all their networks representation will exhibits a self-similarity behavior. We must then conclude that the intricate nature of the divisor functions results from the fractal nature of the partition function described in the present work.
Similar papers 1
July 2, 2013
This paper introduced a way of fractal to solve the problem of taking count of the integer partitions, furthermore, using the method in this paper some recurrence equations concerning the integer partitions can be deduced, including the pentagonal number theorem.
April 27, 2010
In this note we will give various exact formulas for functions on integer partitions including the functions $p(n)$ and $p(n,k)$ of the number of partitions of $n$ and the number of such partitions into exactly $k$ parts respectively. For instance, we shall prove that $$ p(n) = \sum_{d|n} \sum_{k=1}^{d} \sum_{i_0 =1}^{\lfloor d/k \rfloor} \sum_{i_1 =i_0}^{\lfloor\frac{d- i_0}{k-1} \rfloor} \sum_{i_2 =i_1}^{\lfloor\frac{d- i_0 - i_1}{k-2} \rfloor} ... \sum_{i_{k-3}=i_{k-4}}^{\...
May 16, 2014
The details for the construction of an explicit formula for the divisors function d(n) = #{d | n} are formalized in this article. This formula facilitates a unified approach to the investigation of the error terms of the divisor problem and circle problem.
August 2, 2000
In this paper, we use a simple discrete dynamical model to study integer partitions and their lattice. The set of reachable configurations of the model, with the order induced by the transition rule defined on it, is the lattice of all partitions of an integer, equipped with a dominance ordering. We first explain how this lattice can be constructed by an algorithm in linear time with respect to its size by showing that it has a self-similar structure. Then, we define a natura...
February 12, 2024
Let $p_{\textrm{dsd}} (n)$ be the number of partitions of $n$ into distinct squarefree divisors of $n$. In this note, we find a lower bound for $p_{\textrm{dsd}} (n)$, as well as a sequence of $n$ for which $p_{\textrm{dsd}} (n)$ is unusually large.
February 8, 2021
We develop a calculus that gives an elementary approach to enumerate partition-like objects using an infinite upper-triangular number-theoretic matrix. We call this matrix the Partition-Frequency Enumeration (PFE) matrix. This matrix unifies a large number of results connecting number-theoretic functions to partition-type functions. The calculus is extended to arbitrary generating functions, and functions with Weierstrass products. As a by-product, we recover (and extend) som...
February 19, 2024
A classic theorem of Uchimura states that the difference between the sum of the smallest parts of the partitions of $n$ into an odd number of distinct parts and the corresponding sum for an even number of distinct parts is equal to the number of divisors of $n$. In this article, we initiate the study of the $k$th smallest part of a partition $\pi$ into distinct parts of any integer $n$, namely $s_k(\pi)$. Using $s_k(\pi)$, we generalize the above result for the $k$th smallest...
June 7, 2008
The exponential of the triangular matrix whose entries in the diagonal at distance $n$ from the principal diagonal are all equal to the sum of the inverse of the divisors of $n$ is the triangular matrix whose entries in the diagonal at distance $n$ from the principal diagonal are all equal to the number of partitions of $n$. A similar result is true for any pair of sequences satisfying a special recurrence.
January 20, 2012
We translate Uchimura's identity for the divisor function and whose generalizations into combinatorics of partitions, and give a combinatorial proof of them. As a by-product of their proofs, we obtain some combinatorial results.
January 20, 2021
In this paper, we use a simple discrete dynamical model to study partitions of integers into powers of another integer. We extend and generalize some known results about their enumeration and counting, and we give new structural results. In particular, we show that the set of these partitions can be ordered in a natural way which gives the distributive lattice structure to this set. We also give a tree structure which allow efficient and simple enumeration of the partitions o...