July 23, 2007
Maxwell's demon was born in 1867 and still thrives in modern physics. He plays important roles in clarifying the connections between two theories: thermodynamics and information. Here, we present the history of the demon and a variety of interesting consequences of the second law of thermodynamics, mainly in quantum mechanics, but also in the theory of gravity. We also highlight some of the recent work that explores the role of information, illuminated by Maxwell's demon, in ...
November 28, 2017
Resolution of the century-long paradox on Maxwell's demon reveals a deep connection between information theory and thermodynamics. Although initially introduced as a thought experiment, Maxwell's demon can now be implemented in several physical systems, leading to intriguing test of information-thermodynamic relations. Here, we report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operation...
November 6, 2018
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demon's intricate action consists of measuring individual particles and subsequently performing feedback. Here we show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a non-equilibrium distribution to seemingly break the second law of thermodynamics. We propose both an el...
May 28, 2016
Maxwell's demon explores the role of information in physical processes. Employing information about microscopic degrees of freedom, this "intelligent observer" is capable of compensating entropy production (or extracting work), apparently challenging the second law of thermodynamics. In a modern standpoint, it is regarded as a feedback control mechanism and the limits of thermodynamics are recast incorporating information-to-energy conversion. We derive a trade-off relation b...
November 3, 2016
We study how correlations affect the performance of the simulator of a Maxwell's demon demonstrated in a recent optical experiment [Vidrighin et al., Phys. Rev. Lett. 116, 050401 (2016)]. The power of the demon is found to be enhanced or hindered, depending on the nature of the correlation, in close analogy to the situation faced by a thermal demon.
January 16, 2020
A demonic being, introduced by Maxwell, to miraculously create thermal non-equilibrium and violate the Second law of thermodynamics, has been among the most intriguing and elusive wishful concepts for over 150 years. Maxwell and his followers focused on 'effortless gating' a molecule at a time, but overlooked simultaneous interference of other chaotic molecules, while the demon exorcists tried to justify impossible processes with misplaced 'compensations' by work of measureme...
February 18, 2017
A theory of feedback controlled heat transport in quantum systems is presented. It is based on modelling heat engines as driven multipartite systems subject to projective quantum measurements and measurement-conditioned unitary evolutions. The theory unifies various results presented in the previous literature. Feedback control breaks time reversal invariance. This in turn results in the fluctuation relation not being obeyed. Its restoration occurs by an appropriate accountin...
December 19, 2019
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwell's demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using...
May 15, 2024
In scenarios coined Maxwell's demon, information on microscopic degrees of freedom is used to seemingly violate the second law of thermodynamics. This has been studied in the classical as well as the quantum domain. In this paper, we study an implementation of Maxwell's demon that can operate in both domains. In particular, we investigate information-to-work conversion over the quantum-to-classical transition. The demon continuously measures the charge state of a double quant...
May 3, 2018
This paper provides an overview of the first experimental realizations of quantum-mechanical Maxwell's demons based on superconducting circuits. The principal results of these experiments are recalled and put into context. We highlight the versatility offered by superconducting circuits for studying quantum thermodynamics.