September 10, 2021
Similar papers 2
July 18, 2016
We prove new exponents for the energy version of the Erd\H{o}s-Szemer\'edi sum-product conjecture, raised by Balog and Wooley. They match the previously established milestone values for the standard formulation of the question, both for general fields and the special case of real or complex numbers, and appear to be the best ones attainable within the currently available technology. Further results are obtained about multiplicative energies of additive shifts and a strengthen...
April 4, 2009
In the present paper we show that if A is a set of n real numbers, and the product set A.A has at most n^(1+c) elements, then the k-fold sumset kA has at least n^(log(k/2)/2 log 2 + 1/2 - f_k(c)) elements, where f_k(c) -> 0 as c -> 0. We believe that the methods in this paper might lead to a much stronger result; indeed, using a result of Trevor Wooley on Vinogradov's Mean Value Theorem and the Tarry-Escott Problem, we show that if |A.A| < n^(1+c), then |k(A.A)| > n^(Omega((k...
June 5, 2008
We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$
August 22, 2011
A set of reals $A=\{a_1,...,a_n\}$ labeled in increasing order is called convex if there exists a continuous strictly convex function $f$ such that $f(i)=a_i$ for every $i$. Given a convex set $A$, we prove \[|A+A|\gg\frac{|A|^{14/9}}{(\log|A|)^{2/9}}.\] Sumsets of different summands and an application to a sum-product-type problem are also studied either as remarks or as theorems.
August 20, 2023
We prove that every additive set $A$ with energy $E(A)\ge |A|^3/K$ has a subset $A'\subseteq A$ of size $|A'|\ge (1-\varepsilon)K^{-1/2}|A|$ such that $|A'-A'|\le O_\varepsilon(K^{4}|A'|)$. This is, essentially, the largest structured set one can get in the Balog-Szemer\'edi-Gowers theorem.
March 28, 2023
Given $d,s \in \mathbb{N}$, a finite set $A \subseteq \mathbb{Z}$ and polynomials $\varphi_1, \dots, \varphi_{s} \in \mathbb{Z}[x]$ such that $1 \leq deg \varphi_i \leq d$ for every $1 \leq i \leq s$, we prove that \[ |A^{(s)}| + |\varphi_1(A) + \dots + \varphi_s(A) | \gg_{s,d} |A|^{\eta_s} , \] for some $\eta_s \gg_{d} \log s / \log \log s$. Moreover if $\varphi_i(0) \neq 0$ for every $1 \leq i \leq s$, then \[ |A^{(s)}| + |\varphi_1(A) \dots \varphi_s(A) | \gg_{s,d} |A|^{...
September 3, 2003
We prove the following theorem: for all positive integers $b$ there exists a positive integer $k$, such that for every finite set $A$ of integers with cardinality $|A| > 1$, we have either $$ |A + ... + A| \geq |A|^b$$ or $$ |A \cdot ... \cdot A| \geq |A|^b$$ where $A + ... + A$ and $A \cdot ... \cdot A$ are the collections of $k$-fold sums and products of elements of $A$ respectively. This is progress towards a conjecture of Erd\"os and Szemer\'edi on sum and product sets.
May 22, 2020
We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...
August 11, 2012
In the paper we find new inequalities involving the intersections $A\cap (A-x)$ of shifts of some subset $A$ from an abelian group. We apply the inequalities to obtain new upper bounds for the additive energy of multiplicative subgroups and convex sets and also a series another results on the connection of the additive energy and so--called higher moments of convolutions. Besides we prove new theorems on multiplicative subgroups concerning lower bounds for its doubling consta...
April 3, 2023
In this paper, we prove that the bound \[ \max \{ |8A-7A|,|5f(A)-4f(A)| \} \gg |A|^{\frac{3}{2} + \frac{1}{54}-o(1)} \] holds for all $A \subset \mathbb R$, and for all convex functions $f$ which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate \[ \max \{ |16A| , |A^{(16)}| \} \gg |A|^{\frac{3}{2} + c}, \] for some $c>0$. Previously, no sum-product estimate ...