January 4, 2018
This thesis aims at concluding the classification results for topological phases with symmetry in 2+1 dimensions. The main result is that topological phases are classified by a triple of unitary braided fusion categories $\mathcal E\subset\mathcal C\subset\mathcal M$ plus the chiral central charge $c$. Here $\mathcal E$ is a symmetric fusion category, $\mathcal E=\mathrm{Rep}(G)$ for boson systems or $\mathcal E=\mathrm{sRep}(G^f)$ for fermion systems, consisting of the repre...
May 30, 2022
We present a general algebraic framework for gauging a 0-form compact, connected Lie group symmetry in (2+1)d topological phases. Starting from a symmetry fractionalization pattern of the Lie group $G$, we first extend $G$ to a larger symmetry group $\tilde{G}$, such that there is no fractionalization with respect to $\tilde{G}$ in the topological phase, and the effect of gauging $\tilde{G}$ is to tensor the original theory with a $\tilde{G}$ Chern-Simons theory. To restore t...
February 12, 2013
We construct in the K matrix formalism concrete examples of symmetry enriched topological phases, namely intrinsically topological phases with global symmetries. We focus on the Abelian and non-chiral topological phases and demonstrate by our examples how the interplay between the global symmetry and the fusion algebra of the anyons of a topologically ordered system determines the existence of gapless edge modes protected by the symmetry and that a (quasi)-group structure can...
February 11, 2013
We study 2+1 dimensional phases with topological order, such as fractional quantum Hall states and gapped spin liquids, in the presence of global symmetries. Phases that share the same topological order can then differ depending on the action of symmetry, leading to symmetry enriched topological (SET) phases. Here we present a K-matrix Chern-Simons approach to identify all distinct phases with Abelian topological order, in the presence of unitary or anti-unitary global symmet...
January 5, 2018
Symmetry fractionalization (SF) on topological excitations is one of the most remarkable quantum phenomena in topological orders with symmetry, i.e., symmetry-enriched topological phases. While much progress has been theoretically and experimentally made in 2D, the understanding on SF in 3D is far from complete. A long-standing challenge is to understand SF on looplike topological excitations which are spatially extended objects. In this work, we construct a powerful topologi...
June 24, 2016
Symmetry fractionalization describes the fascinating phenomena that excitations in a 2D topological system can transform under symmetry in a fractional way. For example in fractional quantum Hall systems, excitations can carry fractional charges while the electrons making up the system have charge one. An important question is to understand what symmetry fractionalization (SF) patterns are possible given different types of topological order and different symmetries. A lot of ...
March 24, 2022
The fractionalization of global symmetry charges is a striking hallmark of topological quantum order. Here, we discuss the fractionalization of subsystem symmetries in two-dimensional topological phases. In line with previous no-go arguments, we show that subsystem symmetry fractionalization is not possible in many cases due to the additional rigid geometric structure of the symmetries. However, we identify a new mechanism that allows fractionalization, involving global relat...
February 18, 2016
Gapped quantum liquids (GQL) include both topologically ordered states (with long range entanglement) and symmetry protected topological (SPT) states (with short range entanglement). In this paper, we propose a classification of 2+1D GQL for both bosonic and fermionic systems: 2+1D bosonic/fermionic GQLs with finite on-site symmetry are classified by non-degenerate unitary braided fusion categories over a symmetric fusion category (SFC) $\cal E$, abbreviated as $\text{UMTC}_{...
November 9, 2015
In two-dimensional topological phases, quasiparticle excitations can carry fractional symmetry quantum numbers. We generalize this notion of symmetry fractionalization to three-dimensional topological phases, in particular to loop excitations, and propose a partial classification for symmetry-enriched $\mathbb{Z}_2$ toric code phase. We apply the results to the classification of fermionic symmetry-protected topological phases in three dimensions.
September 22, 2021
We provide a classification of invertible topological phases of interacting fermions with symmetry in two spatial dimensions for general fermionic symmetry groups $G_f$ and general values of the chiral central charge $c_-$. Here $G_f$ is a central extension of a bosonic symmetry group $G_b$ by fermion parity, $(-1)^F$, specified by a second cohomology class $[\omega_2] \in \mathcal{H}^2(G_b, \mathbb{Z}_2)$. Our approach proceeds by gauging fermion parity and classifying the r...