June 20, 2013
The significant role of epigenetic mechanisms within natural systems has become increasingly clear. This paper uses a recently presented abstract, tunable Boolean genetic regulatory network model to explore aspects of epigenetics. It is shown how dynamically controlling transcription via a DNA methylation-inspired mechanism can be selected for by simulated evolution under various single and multiple cell scenarios. Further, it is shown that the effects of such control can be ...
December 31, 2020
In genetic networks, information of relevance to the organism is represented by the concentrations of transcription factor molecules. In order to extract this information the cell must effectively "measure"' these concentrations, but there are physical limits to the precision of these measurements. We explore this trading between bits of precision in measuring concentration and bits of relevant information that can be extracted, using the gap gene network in the early fly emb...
April 11, 2023
Genes are fundamental for analyzing biological systems and many recent works proposed to utilize gene expression for various biological tasks by deep learning models. Despite their promising performance, it is hard for deep neural networks to provide biological insights for humans due to their black-box nature. Recently, some works integrated biological knowledge with neural networks to improve the transparency and performance of their models. However, these methods can only ...
May 5, 2022
Cell signaling networks are complex and often incompletely characterized, making it difficult to obtain a comprehensive picture of the mechanisms they encode. Mathematical modeling of these networks provides important clues, but the models themselves are often complex, and it is not always clear how to extract falsifiable predictions. Here we take an inverse approach, using experimental data at the cell level to {deduce} the minimal signaling network. We focus on cells' respo...
June 22, 2010
These are notes for a set of 7 two-hour lectures given at the 2010 Summer School on Quantitative Evolutionary and Comparative Genomics at OIST, Okinawa, Japan. The emphasis is on understanding how biological systems process information. We take a physicist's approach of looking for simple phenomenological descriptions that can address the questions of biological function without necessarily modeling all (mostly unknown) microscopic details; the example that is developed throu...
October 17, 2023
Symmetry principles have proven important in physics, deep learning and geometry, allowing for the reduction of complicated systems to simpler, more comprehensible models that preserve the system's features of interest. Biological systems often show a high level of complexity and consist of a high number of interacting parts. Using symmetry fibrations, the relevant symmetries for biological 'message-passing' networks, we reduced the gene regulatory networks of E. coli and B. ...
April 22, 2011
Gene regulatory networks arise in all living cells, allowing the control of gene expression patterns. The study of their topology has revealed that certain subgraphs of interactions or "motifs" appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have a pr...
July 12, 2009
The activation/repression of a given gene is typically regulated by multiple transcription factors (TFs) that bind at the gene regulatory region and recruit RNA polymerase (RNAP). The interactions between the promoter region and TFs and between different TFs specify the dynamic responses of the gene under different physiological conditions. By choosing specific regulatory interactions with up to three transcription factors, we designed several functional motifs, each of which...
July 31, 2011
Identifying features of molecular regulatory networks is an important problem in systems biology. It has been shown that the combinatorial logic of such networks can be captured in many cases by special functions called nested canalyzing in the context of discrete dynamic network models. It was also shown that the dynamics of networks constructed from such functions has very special properties that are consistent with what is known about molecular networks, and that simplify ...
August 2, 2009
In the postgenome era many efforts have been dedicated to systematically elucidate the complex web of interacting genes and proteins. These efforts include experimental and computational methods. Microarray technology offers an opportunity for monitoring gene expression level at the genome scale. By recourse to information theory, this study proposes a mathematical approach to reconstruct gene regulatory networks at coarse-grain level from high throughput gene expression data...