November 8, 2021
Similar papers 2
May 30, 2023
Transport networks are crucial for the functioning of natural and technological systems. We study a mathematical model of vascular network adaptation, where the network structure dynamically adjusts to changes in blood flow and pressure. The model is based on local feedback mechanisms that occur on different time scales in the mammalian vasculature. The cost exponent $\gamma$ tunes the vessel growth in the adaptation rule, and we test the hypothesis that the cost exponent is ...
September 19, 2023
Physarum polycephalum is a single-celled, multi-nucleated slime mold whose body constitutes a network of veins. As it explores its environment, it adapts and optimizes its network to external stimuli. It has been shown to exhibit complex behavior, like solving mazes, finding the shortest path, and creating cost-efficient and robust networks. Several models have been developed to attempt to mimic its network's adaptation in order to try to understand the mechanisms behind its ...
August 4, 2023
Understanding of vascular organization is a long-standing problem in quantitative biology and biophysics and is essential for the growth of large cultured tissues. Approaches are needed that (1) make predictions of optimal arteriovenous networks in order to understand the natural vasculatures that originate from evolution (2) can design vasculature for 3D printing of cultured tissues, meats, organoids and organs. I present a method for determining the globally optimal structu...
May 6, 2014
We build an evolutionary scenario that explains how some crucial physiological constraints in the arterial network of mammals - i.e. hematocrit, vessels diameters and arterial pressure drops - could have been selected by evolution. We propose that the arterial network evolved while being constrained by its function as an organ. To support this hypothesis, we focus our study on one of the main function of blood network: oxygen supply to the organs. We consider an idealized org...
January 20, 2020
In this work, we introduce an algorithmic approach to generate microvascular networks starting from larger vessels that can be reconstructed without noticeable segmentation errors. Contrary to larger vessels, the reconstruction of fine-scale components of microvascular networks shows significant segmentation errors, and an accurate mapping is time and cost intense. Thus there is a need for fast and reliable reconstruction algorithms yielding surrogate networks having similar ...
November 26, 2009
Self-regulation of living tissue as an example of self-organization phenomena in hierarchical systems of biological, ecological, and social nature is under consideration. The characteristic feature of these systems is the absence of any governing center and, thereby, their self-regulation is based on a cooperative interaction of all the elements. The work develops a mathematical theory of a vascular network response to local effects on scales of individual units of peripheral...
March 11, 2019
Branching in vascular networks and in overall organismic form is one of the most common and ancient features of multicellular plants, fungi, and animals. By combining machine-learning techniques with new theory that relates vascular form to metabolic function, we enable novel classification of diverse branching networks--mouse lung, human head and torso, angiosperm and gymnosperm plants. We find that ratios of limb radii--which dictate essential biologic functions related to ...
July 14, 2020
We examine the role of complexity on arterial tree structures, determining globally optimal vessel arrangements using the Simulated AnneaLing Vascular Optimization (SALVO) algorithm, which we have previously used to reproduce features of cardiac and cerebral vasculatures. Fundamental biophysical understanding of complex vascular structure has applications to modelling of cardiovascular diseases, and for improved representations of vasculatures in large artificial tissues. In ...
May 20, 2023
Physarum polycephalum is an acellular slime mould that grows as a highly adaptive network of veins filled with protoplasm. As it forages, Physarum dynamically rearranges its network structure as a response to local stimuli information, optimising the connection between food sources. This high-level behaviour was already exploited to solve numerous optimisation problems. We develop a flow-based model for the adaptive network formation of Physarum, which solves some inconsisten...
September 3, 2017
Vascular networks are used across the kingdoms of life to transport fluids, nutrients and cellular material. A popular unifying idea for understanding the diversity and constraints of these networks is that the conduits making up the network are organized to optimize dissipation or other functions within the network. However the general principles governing the optimal networks remain unknown. In particular Durand showed that under Neumann boundary conditions networks, that m...