November 8, 2021
Similar papers 5
December 20, 2019
Can three-dimensional, microvasculature networks still ensure blood supply if individual links fail? We address this question in the sinusoidal network, a plexus-like microvasculature network, which transports nutrient-rich blood to every hepatocyte in liver tissue, by building on recent advances in high-resolution imaging and digital reconstruction of adult mice liver tissue. We find that the topology of the three-dimensional sinusoidal network reflects its two design requir...
May 30, 2022
The prevailing theory for metabolic scaling is based on area-preserved, space-filling fractal vascular networks. However, it's known both theoretically and experimentally that animals' vascular systems obey Murray's cubic branching law. Area-preserved branching conflicts with energy minimization and hence the least-work principle. Additionally, while Kleiber's law is the dominant rule for both animals and plants, small animals are observed to follow the 2/3-power law, large a...
October 15, 2018
Numerous networks, such as transportation, distribution and delivery networks optimize their designs in order to increase efficiency and lower costs, improving the stability of its intended functions, etc. Networks that distribute goods, such as electricity, water, gas, telephone and data (Internet), or services as mail, railways and roads are examples of transportation networks. The optimal design fixes network architecture, including clustering, degree distribution, hierarc...
October 12, 2022
Existing models of adaptation in biological flow networks consider their constituent vessels (e.g. veins and arteries) to be rigid, thus predicting a non physiological response when the drive (e.g. the heart) is dynamic. Here we show that incorporating pulsatile driving and properties such as fluid inertia and vessel compliance into a general adaptation framework fundamentally changes the expected structure at steady state of a minimal one-loop network. In particular, pulsati...
October 15, 2014
Natural and man-made transport webs are frequently dominated by dense sets of nested cycles. The architecture of these networks, as defined by the topology and edge weights, determines how efficiently the networks perform their function. Yet, the set of tools that can characterize such a weighted cycle-rich architecture in a physically relevant, mathematically compact way is sparse. In order to fill this void, we have developed a new algorithm that rests on an abstraction of ...
October 29, 2012
Metabolic allometry, a common pattern in nature, is a close-to-3/4-power scaling law between metabolic rate and body mass in organisms, across and within species. An analogous relationship between metabolic rate and water volume in river networks has also been observed. Optimal Channel Networks (OCNs), at local optima, accurately model many scaling properties of river systems, including metabolic allometry. OCNs are embedded in two-dimensional space; this work extends the mod...
November 30, 2008
Self-regulation of living tissue as an example of self-organization phenomena in active fractal systems of biological, ecological, and social nature is under consideration. The characteristic feature of these systems is the absence of any governing center and, thereby, their self-regulation is based on a cooperative interaction of all the elements. The paper develops a mathematical theory of a vascular network response to local effects on scales of individual units of periphe...
December 23, 2020
Images of natural systems may represent patterns of network-like structure, which could reveal important information about the topological properties of the underlying subject. However, the image itself does not automatically provide a formal definition of a network in terms of sets of nodes and edges. Instead, this information should be suitably extracted from the raw image data. Motivated by this, we present a principled model to extract network topologies from images that ...
December 14, 2015
In animals, gas exchange between blood and tissues occurs in narrow vessels, whose diameter is comparable to that of a red blood cell. Red blood cells must deform to squeeze through these narrow vessels, transiently blocking or occluding the vessels they pass through. Although the dynamics of vessel occlusion have been studied extensively, it remains an open question why microvessels need to be so narrow. We study occlusive dynamics within a model microvascular network: the e...
February 24, 2004
An important feature of many complex systems, both natural and artificial, is the structure and organization of their interaction networks with interesting properties. Here we present a theory of self-organization by evolutionary adaptation in which we show how the structure and organization of a network is related to the survival, or in general the performance, objectives of the system. We propose that a complex system optimizes its network structure in order to maximize its...