February 4, 2022
We approach the well-studied problem of supervised group invariant and equivariant machine learning from the point of view of geometric topology. We propose a novel approach using a pre-processing step, which involves projecting the input data into a geometric space which parametrises the orbits of the symmetry group. This new data can then be the input for an arbitrary machine learning model (neural network, random forest, support-vector machine etc). We give an algorithm to compute the geometric projection, which is efficient to implement, and we illustrate our approach on some example machine learning problems (including the well-studied problem of predicting Hodge numbers of CICY matrices), in each case finding an improvement in accuracy versus others in the literature. The geometric topology viewpoint also allows us to give a unified description of so-called intrinsic approaches to group equivariant machine learning, which encompasses many other approaches in the literature.
Similar papers 1
September 29, 2022
Inspired by constraints from physical law, equivariant machine learning restricts the learning to a hypothesis class where all the functions are equivariant with respect to some group action. Irreducible representations or invariant theory are typically used to parameterize the space of such functions. In this article, we introduce the topic and explain a couple of methods to explicitly parameterize equivariant functions that are being used in machine learning applications. I...
February 18, 2020
We introduce a method to design a computationally efficient $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup $G \leq S_n$ of the symmetric group on input data. The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data. This latent representation is then processed with a multi-layer perceptron in the net...
December 11, 2020
We propose a computationally efficient $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup $G \leq S_n$ of the symmetric group on input data. The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data. Theoretical considerations are supported by numerical experiments, which demonstrate the effectiveness and...
June 8, 2023
Crystallographic groups describe the symmetries of crystals and other repetitive structures encountered in nature and the sciences. These groups include the wallpaper and space groups. We derive linear and nonlinear representations of functions that are (1) smooth and (2) invariant under such a group. The linear representation generalizes the Fourier basis to crystallographically invariant basis functions. We show that such a basis exists for each crystallographic group, that...
November 1, 2023
Symmetry is present throughout nature and continues to play an increasingly central role in physics and machine learning. Fundamental symmetries, such as Poincar\'{e} invariance, allow physical laws discovered in laboratories on Earth to be extrapolated to the farthest reaches of the universe. Symmetry is essential to achieving this extrapolatory power in machine learning applications. For example, translation invariance in image classification allows models with fewer parame...
May 4, 2022
Quantum Machine Learning (QML) models are aimed at learning from data encoded in quantum states. Recently, it has been shown that models with little to no inductive biases (i.e., with no assumptions about the problem embedded in the model) are likely to have trainability and generalization issues, especially for large problem sizes. As such, it is fundamental to develop schemes that encode as much information as available about the problem at hand. In this work we present a s...
June 8, 2015
We analyze in this paper a random feature map based on a theory of invariance I-theory introduced recently. More specifically, a group invariant signal signature is obtained through cumulative distributions of group transformed random projections. Our analysis bridges invariant feature learning with kernel methods, as we show that this feature map defines an expected Haar integration kernel that is invariant to the specified group action. We show how this non-linear random fe...
July 9, 2024
We present new invariant machine learning models that approximate the Ricci-flat metric on Calabi-Yau (CY) manifolds with discrete symmetries. We accomplish this by combining the $\phi$-model of the cymetric package with non-trainable, $G$-invariant, canonicalization layers that project the $\phi$-model's input data (i.e. points sampled from the CY geometry) to the fundamental domain of a given symmetry group $G$. These $G$-invariant layers are easy to concatenate, provided o...
June 28, 2023
In the recent years, deep learning techniques have shown great success in various tasks related to inverse problems, where a target quantity of interest can only be observed through indirect measurements by a forward operator. Common approaches apply deep neural networks in a post-processing step to the reconstructions obtained by classical reconstruction methods. However, the latter methods can be computationally expensive and introduce artifacts that are not present in the ...
October 14, 2022
Recent advances in classical machine learning have shown that creating models with inductive biases encoding the symmetries of a problem can greatly improve performance. Importation of these ideas, combined with an existing rich body of work at the nexus of quantum theory and symmetry, has given rise to the field of Geometric Quantum Machine Learning (GQML). Following the success of its classical counterpart, it is reasonable to expect that GQML will play a crucial role in de...