ID: 2202.02164

Group invariant machine learning by fundamental domain projections

February 4, 2022

View on ArXiv
Benjamin Aslan, Daniel Platt, David Sheard
Computer Science
Mathematics
Machine Learning
Geometric Topology

We approach the well-studied problem of supervised group invariant and equivariant machine learning from the point of view of geometric topology. We propose a novel approach using a pre-processing step, which involves projecting the input data into a geometric space which parametrises the orbits of the symmetry group. This new data can then be the input for an arbitrary machine learning model (neural network, random forest, support-vector machine etc). We give an algorithm to compute the geometric projection, which is efficient to implement, and we illustrate our approach on some example machine learning problems (including the well-studied problem of predicting Hodge numbers of CICY matrices), in each case finding an improvement in accuracy versus others in the literature. The geometric topology viewpoint also allows us to give a unified description of so-called intrinsic approaches to group equivariant machine learning, which encompasses many other approaches in the literature.

Similar papers 1