February 12, 2022
We review the recent programme of using machine-learning to explore the landscape of mathematical problems. With this paradigm as a model for human intuition - complementary to and in contrast with the more formalistic approach of automated theorem proving - we highlight some experiments on how AI helps with conjecture formulation, pattern recognition and computation.
Similar papers 1
March 22, 2023
We survey some recent applications of machine learning to problems in geometry and theoretical physics. Pure mathematical data has been compiled over the last few decades by the community and experiments in supervised, semi-supervised and unsupervised machine learning have found surprising success. We thus advocate the programme of machine learning mathematical structures, and formulating conjectures via pattern recognition, in other words using artificial intelligence to hel...
March 7, 2024
The current state-of-the-art in artificial intelligence is impressive, especially in terms of mastery of language, but not so much in terms of mathematical reasoning. What could be missing? Can we learn something useful about that gap from how the brains of mathematicians go about their craft? This essay builds on the idea that current deep learning mostly succeeds at system 1 abilities -- which correspond to our intuition and habitual behaviors -- but still lacks something i...
February 11, 2025
Computers have already changed the way that humans do mathematics: they enable us to compute efficiently. But will they soon be helping us to reason? And will they one day start reasoning themselves? We give an overview of recent developments in neural networks, computer theorem provers and large language models.
June 22, 2023
In the words of the esteemed mathematician Paul Erd\"os, the mathematician's task is to \emph{prove and conjecture}. These two processes form the bedrock of all mathematical endeavours, and in the recent years, the mathematical community has increasingly sought the assistance of computers to bolster these tasks. This paper is a testament to that pursuit; it presents a robust framework enabling a computer to automatically generate conjectures - particularly those conjectures t...
May 30, 2024
Recent years have seen the dramatic rise of the usage of AI algorithms in pure mathematics and fundamental sciences such as theoretical physics. This is perhaps counter-intuitive since mathematical sciences require the rigorous definitions, derivations, and proofs, in contrast to the experimental sciences which rely on the modelling of data with error-bars. In this Perspective, we categorize the approaches to mathematical discovery as "top-down", "bottom-up" and "meta-mathema...
October 19, 2023
Mathematics is one of the most powerful conceptual systems developed and used by the human species. Dreams of automated mathematicians have a storied history in artificial intelligence (AI). Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems. In this work, we reflect on these goals from a \textit{cognitive science} perspective. We call attention to several classical and on...
December 21, 2024
This paper presents a comprehensive overview on the applications of artificial intelligence (AI) in mathematical research, highlighting the transformative role AI has begun to play in this domain. Traditionally, AI advancements have heavily relied on theoretical foundations provided by mathematics and statistics. However, recent developments in AI, particularly in reinforcement learning (RL) and large language models (LLMs), have demonstrated the potential for AI to contribut...
June 8, 2017
We propose a paradigm to deep-learn the ever-expanding databases which have emerged in mathematical physics and particle phenomenology, as diverse as the statistics of string vacua or combinatorial and algebraic geometry. As concrete examples, we establish multi-layer neural networks as both classifiers and predictors and train them with a host of available data ranging from Calabi-Yau manifolds and vector bundles, to quiver representations for gauge theories. We find that ev...
April 17, 2022
The goal of identifying the Standard Model of particle physics and its extensions within string theory has been one of the principal driving forces in string phenomenology. Recently, the incorporation of artificial intelligence in string theory and certain theoretical advancements have brought to light unexpected solutions to mathematical hurdles that have so far hindered progress in this direction. In this review we focus on model building efforts in the context of the $E_8\...
January 15, 2021
We review, for a general audience, a variety of recent experiments on extracting structure from machine-learning mathematical data that have been compiled over the years. Focusing on supervised machine-learning on labeled data from different fields ranging from geometry to representation theory, from combinatorics to number theory, we present a comparative study of the accuracies on different problems. The paradigm should be useful for conjecture formulation, finding more eff...