February 25, 2022
We study the refined and unrefined crystal/BPS partition functions of D6-D2-D0 brane bound states for all toric Calabi-Yau threefolds without compact 4-cycles and some non-toric examples. They can be written as products of (generalized) MacMahon functions. We check our expressions and use them as vacuum characters to study the gluings. We then consider the wall crossings and discuss possible crystal descriptions for different chambers. We also express the partition functions in terms of plethystic exponentials. For $\mathbb{C}^3$ and tripled affine quivers, we find their connections to nilpotent Kac polynomials. Similarly, the partition functions of D4-D2-D0 brane bound states can be obtained by replacing the (generalized) MacMahon functions with the inverse of (generalized) Euler functions.
Similar papers 1
November 18, 2008
We construct a statistical model of crystal melting to count BPS bound states of D0 and D2 branes on a single D6 brane wrapping an arbitrary toric Calabi-Yau threefold. The three-dimensional crystalline structure is determined by the quiver diagram and the brane tiling which characterize the low energy effective theory of D branes. The crystal is composed of atoms of different colors, each of which corresponds to a node of the quiver diagram, and the chemical bond is dictated...
July 5, 2006
We show that the index of BPS bound states of D4, D2 and D0 branes in IIA theory compactified on a toric Calabi Yau are encoded in the combinatoric counting of restricted three dimensional partitions. Using the torus symmetry, we demonstrate that the Euler character of the moduli space of bound states localizes to the number of invariant configurations that can be obtained by gluing D0 bound states in the C^3 vertex along the D2 brane wrapped P^1 legs of the toric diagram. We...
We introduce a class of 4-dimensional crystal melting models that count the BPS bound state of branes on toric Calabi-Yau 4-folds. The crystalline structure is determined by the brane brick model associated to the Calabi-Yau 4-fold under consideration or, equivalently, its dual periodic quiver. The crystals provide a discretized version of the underlying toric geometries. We introduce various techniques to visualize crystals and their melting configurations, including 3-dimen...
January 5, 2024
We study the counting problem of BPS D-branes wrapping holomorphic cycles of a general toric Calabi-Yau manifold. We evaluate the Jeffrey-Kirwan residues for the flavoured Witten index for the supersymmetric quiver quantum mechanics on the worldvolume of the D-branes, and find that BPS degeneracies are described by a statistical mechanical model of crystal melting. For Calabi-Yau threefolds, we reproduce the crystal melting models long known in the literature. For Calabi-Yau ...
June 24, 2011
We review free fermion, melting crystal and matrix model representations of wall-crossing phenomena on local, toric Calabi-Yau manifolds. We consider both unrefined and refined BPS counting of closed BPS states involving D2 and D0-branes bound to a D6-brane, as well as open BPS states involving open D2-branes ending on an additional D4-brane. Appropriate limit of these constructions provides, among the others, matrix model representation of refined and unrefined topological s...
August 16, 2020
The statistical model of crystal melting represents BPS configurations of D-branes on a toric Calabi-Yau three-fold. Recently it has been noticed that an infinite-dimensional algebra, the quiver Yangian, acts consistently on the crystal-melting configurations. We physically derive the algebra and its action on the BPS states, starting with the effective supersymmetric quiver quantum mechanics on the D-brane worldvolume. This leads to remarkable combinatorial identities involv...
October 2, 2010
In this paper, we use an M-theory model to conjecture the refined reminiscence of the OSV formula connecting the refined topological string partition function with the refined BPS states partition function for the toric Calabi-Yau threefolds without any compact four cycles. Further, we show how to use the vertex operators in 2d free fermions to reproduce the refined BPS states partition function for the $\mathbb{C}^3$ case and the wall-crossing formulas of the refined BPS sta...
March 19, 2020
We find a new infinite class of infinite-dimensional algebras acting on BPS states for non-compact toric Calabi-Yau threefolds. In Type IIA superstring compactification on a toric Calabi-Yau threefold, the D-branes wrapping holomorphic cycles represent the BPS states, and the fixed points of the moduli spaces of BPS states are described by statistical configurations of crystal melting. Our algebras are "bootstrapped" from the molten crystal configurations, hence they act on t...
June 10, 2010
We study the spectrum of BPS D-branes on a Calabi-Yau manifold using the 0+1 dimensional quiver gauge theory that describes the dynamics of the branes at low energies. The results of Kontsevich and Soibelman predict how the degeneracies change. We argue that Seiberg dualities of the quiver gauge theories, which change the basis of BPS states, correspond to crossing the "walls of the second kind." There is a large class of examples, including local del Pezzo surfaces, where th...
February 3, 2011
We survey geometrical and especially combinatorial aspects of generalized Donaldson-Thomas invariants (also called BPS invariants) for toric Calabi-Yau manifolds, emphasizing the role of plane partitions and their generalizations in the recently proposed crystal melting model. We also comment on equivalence with a vicious walker model and the matrix model representation of the partition function.