March 30, 2022
We develop a method to infer community structure in directed networks where the groups are ordered in a latent one-dimensional hierarchy that determines the preferred edge direction. Our nonparametric Bayesian approach is based on a modification of the stochastic block model (SBM), which can take advantage of rank alignment and coherence to produce parsimonious descriptions of networks that combine ordered hierarchies with arbitrary mixing patterns between groups. Since our model also includes directed degree correction, we can use it to distinguish non-local hierarchical structure from local in- and out-degree imbalance -- thus removing a source of conflation present in most ranking methods. We also demonstrate how we can reliably compare with the results obtained with the unordered SBM variant to determine whether a hierarchical ordering is statistically warranted in the first place. We illustrate the application of our method on a wide variety of empirical networks across several domains.
Similar papers 1
May 29, 2017
This chapter provides a self-contained introduction to the use of Bayesian inference to extract large-scale modular structures from network data, based on the stochastic blockmodel (SBM), as well as its degree-corrected and overlapping generalizations. We focus on nonparametric formulations that allow their inference in a manner that prevents overfitting, and enables model selection. We discuss aspects of the choice of priors, in particular how to avoid underfitting via incre...
March 30, 2019
Multiplex networks have become increasingly more prevalent in many fields, and have emerged as a powerful tool for modeling the complexity of real networks. There is a critical need for developing inference models for multiplex networks that can take into account potential dependencies across different layers, particularly when the aim is community detection. We add to a limited literature by proposing a novel and efficient Bayesian model for community detection in multiplex ...
December 23, 2021
Community detection and hierarchy extraction are usually thought of as separate inference tasks on networks. Considering only one of the two when studying real-world data can be an oversimplification. In this work, we present a generative model based on an interplay between community and hierarchical structures. It assumes that each node has a preference in the interaction mechanism and nodes with the same preference are more likely to interact, while heterogeneous interactio...
September 15, 2020
Modular and hierarchical community structures are pervasive in real-world complex systems. A great deal of effort has gone into trying to detect and study these structures. Important theoretical advances in the detection of modular have included identifying fundamental limits of detectability by formally defining community structure using probabilistic generative models. Detecting hierarchical community structure introduces additional challenges alongside those inherited from...
October 9, 2006
One property of networks that has received comparatively little attention is hierarchy, i.e., the property of having vertices that cluster together in groups, which then join to form groups of groups, and so forth, up through all levels of organization in the network. Here, we give a precise definition of hierarchical structure, give a generic model for generating arbitrary hierarchical structure in a random graph, and describe a statistically principled way to learn the set ...
March 7, 2015
We propose a robust, scalable, integrated methodology for community detection and community comparison in graphs. In our procedure, we first embed a graph into an appropriate Euclidean space to obtain a low-dimensional representation, and then cluster the vertices into communities. We next employ nonparametric graph inference techniques to identify structural similarity among these communities. These two steps are then applied recursively on the communities, allowing us to de...
October 9, 2016
A principled approach to characterize the hidden structure of networks is to formulate generative models, and then infer their parameters from data. When the desired structure is composed of modules or "communities", a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empiri...
January 22, 2020
In bipartite networks, community structures are restricted to being disassortative, in that nodes of one type are grouped according to common patterns of connection with nodes of the other type. This makes the stochastic block model (SBM), a highly flexible generative model for networks with block structure, an intuitive choice for bipartite community detection. However, typical formulations of the SBM do not make use of the special structure of bipartite networks. Here we in...
March 12, 2022
Community detection for large networks is a challenging task due to the high computational cost as well as the heterogeneous community structure. Stochastic block model (SBM) is a popular model to analyze community structure where nodes belonging to the same communities are connected with equal probability. Modularity optimization methods provide a fast and effective way for community detection under SBM with assortative community structure, where nodes within communities are...
October 16, 2013
Discovering and characterizing the large-scale topological features in empirical networks are crucial steps in understanding how complex systems function. However, most existing methods used to obtain the modular structure of networks suffer from serious problems, such as being oblivious to the statistical evidence supporting the discovered patterns, which results in the inability to separate actual structure from noise. In addition to this, one also observes a resolution lim...