ID: 2205.02809

Classical gravitational spinning-spinless scattering at $\mathcal{O}(G^{2} S^{\infty})$

May 5, 2022

View on ArXiv
Rafael Aoude, Kays Haddad, Andreas Helset
High Energy Physics - Theory
General Relativity and Quant...
High Energy Physics - Phenom...

Making use of the recently-derived, all-spin, opposite-helicity Compton amplitude, we calculate the classical gravitational scattering amplitude for one spinning and one spinless object at $\mathcal{O}(G^{2})$ and all orders in spin. By construction, this amplitude exhibits the spin structure that has been conjectured to describe Kerr black holes. This spin structure alone is not enough to fix all deformations of the Compton amplitude by contact terms, but when combined with considerations of the ultrarelativistic limit we can uniquely assign values to the parameters remaining in the even-in-spin sector. Once these parameters are determined, much of the spin dependence of the amplitude resums into hypergeometric functions. Finally, we derive the eikonal phase for aligned-spin scattering.

Similar papers 1

Classical gravitational scattering at $\mathcal{O}(G^{2} S_{1}^{\infty} S_{2}^{\infty})$

April 26, 2023

92% Match
Rafael Aoude, Kays Haddad, Andreas Helset
High Energy Physics - Theory
General Relativity and Quant...
High Energy Physics - Phenom...

We calculate the scattering of two rotating objects with the linear-in-curvature spin-induced multipoles of Kerr black holes at $\mathcal{O}(G^2)$ and all orders in the spins of both objects. This is done including the complete set of contact terms potentially relevant to Kerr-black-hole scattering at $\mathcal{O}(G^2)$. As such, Kerr black holes should be described by this scattering amplitude for a specific choice of values for the contact-term coefficients. The inclusion o...

Find SimilarView on arXiv

Searching for Kerr in the 2PM amplitude

March 11, 2022

91% Match
Rafael Aoude, Kays Haddad, Andreas Helset
High Energy Physics - Theory
General Relativity and Quant...
High Energy Physics - Phenom...

The classical scattering of spinning objects is well described by the spinor-helicity formalism for heavy particles. Using these variables, we derive spurious-pole-free, all-spin opposite-helicity Compton amplitudes (factorizing on physical poles to the minimal, all-spin three-point amplitudes of ref. \cite{Arkani-Hamed:2017jhn}) in the classical limit for QED, QCD, and gravity. The cured amplitudes are subject to deformations by contact terms, the vast majority of whose cont...

Find SimilarView on arXiv

Scattering in Black Hole Backgrounds and Higher-Spin Amplitudes: Part II

December 15, 2022

90% Match
Yilber Fabian Bautista, Alfredo Guevara, ... , Vines Justin
High Energy Physics - Theory
General Relativity and Quant...

We continue to investigate correspondences between, on the one hand, scattering amplitudes for massive higher-spin particles and gravitons in appropriate quantum-to-classical limits, and on the other hand, classical gravitational interactions of spinning black holes according to general relativity. We first construct an ansatz for a gravitational Compton amplitude, at tree level, constrained only by locality, crossing symmetry, unitarity and consistency with the linearized-Ke...

Find SimilarView on arXiv

Covariant Compton Amplitudes in Gravity with Classical Spin

September 20, 2023

88% Match
N. Emil J. Bjerrum-Bohr, Gang Chen, Marcos Skowronek
High Energy Physics - Theory
General Relativity and Quant...

We develop a novel amplitude bootstrap technique manifestly free of unphysical poles for classically spinning particles interacting with gravitons utilizing only the gauge/gravity double-copy and physical factorization limits. Combined with non-factorization polynomial contact contributions from physical data for Kerr black holes, we can address high-spin-order covariant gravitational Compton amplitudes, identifying a pattern for the amplitude that we believe could extend to ...

Find SimilarView on arXiv

Resummed spinning waveforms from five-point amplitudes

October 6, 2023

88% Match
Andreas Brandhuber, Graham R. Brown, Gang Chen, ... , Travaglini Gabriele
High Energy Astrophysical Ph...

We compute the classical tree-level five-point amplitude for the two-to-two scattering of spinning celestial objects with the emission of a graviton. Using this five-point amplitude, we then turn to the computation of the leading-order time-domain gravitational waveform. The method we describe is suitable for arbitrary values of classical spin of Kerr black holes and does not require any expansion in powers of the spin. In this paper we illustrate it in the simpler case of th...

Find SimilarView on arXiv

Dynamics of Spinning Binary at 2PM

June 13, 2024

87% Match
Gang Chen, Tianheng Wang
High Energy Physics - Theory
General Relativity and Quant...

We consider the covariant proposal for the gravitational Compton amplitude for a Kerr black hole. Employing the covariant three- and four-point Compton amplitudes, we assemble the classical one-loop integrand on the maximal cut at all orders in spin, utilizing the method of unitarity. Expanding in powers of spin, we evaluate the one-loop amplitude up to $\mathcal O(G^2 a^8)$. Supplemented with extra contact contributions derived from the far-zone data of the Teukolsky solutio...

Find SimilarView on arXiv

Scattering of Spinning Black Holes from Exponentiated Soft Factors

December 17, 2018

87% Match
Alfredo Guevara, Alexander Ochirov, Justin Vines
High Energy Physics - Theory
General Relativity and Quant...

We provide evidence that the classical scattering of two spinning black holes is controlled by the soft expansion of exchanged gravitons. We show how an exponentiation of Cachazo-Strominger soft factors, acting on massive higher-spin amplitudes, can be used to find spin contributions to the aligned-spin scattering angle, conjecturally extending previously known results to higher orders in spin at one-loop order. The extraction of the classical limit is accomplished via the on...

Find SimilarView on arXiv

The Born regime of gravitational amplitudes

June 19, 2024

87% Match
Miguel Correia, Giulia Isabella
High Energy Physics - Theory
General Relativity and Quant...
High Energy Physics - Phenom...

We study the $2 \to 2$ scattering in the regime where the wavelength of the scattered objects is comparable to their distance but is much larger than any Compton wavelength in the quantum field theory. We observe that in this regime - which differs from the eikonal - the Feynman diagram expansion takes the form of a geometric series, akin to the Born series of quantum mechanics. Conversely, we can define the Feynman diagram expansion as the Born series of a relativistic effec...

Find SimilarView on arXiv

Compton Black-Hole Scattering for $s \leq 5/2$

July 30, 2021

86% Match
Marco Chiodaroli, Henrik Johansson, Paolo Pichini
High Energy Physics - Theory
General Relativity and Quant...

Quantum scattering amplitudes for massive matter have received new attention in connection to classical calculations relevant to gravitational-wave physics. Amplitude methods and insights are now employed for precision computations of observables needed for describing the gravitational dynamics of bound massive objects such as black holes. An important direction is the inclusion of spin effects needed to accurately describe rotating (Kerr) black holes. Higher-spin amplitudes ...

Find SimilarView on arXiv

Test black holes, scattering amplitudes and perturbations of Kerr spacetime

September 16, 2019

86% Match
Nils Siemonsen, Justin Vines
General Relativity and Quant...
High Energy Physics - Theory

It has been suggested that amplitudes for quantum higher-spin massive particles exchanging gravitons lead, via a classical limit, to results for scattering of spinning black holes in general relativity, when the massive particles are in a certain way minimally coupled to gravity. Such limits of such amplitudes suggest, at least at lower orders in spin, up to second order in the gravitational constant $G$, that the classical aligned-spin scattering function for an arbitrary-ma...

Find SimilarView on arXiv