May 30, 2022
We present a general algebraic framework for gauging a 0-form compact, connected Lie group symmetry in (2+1)d topological phases. Starting from a symmetry fractionalization pattern of the Lie group $G$, we first extend $G$ to a larger symmetry group $\tilde{G}$, such that there is no fractionalization with respect to $\tilde{G}$ in the topological phase, and the effect of gauging $\tilde{G}$ is to tensor the original theory with a $\tilde{G}$ Chern-Simons theory. To restore the desired gauge symmetry, one then has to gauge an appropriate one-form symmetry (or, condensing certain Abelian anyons) to obtain the final result. Studying the consistency of the gauging procedure leads to compatibility conditions between the symmetry fractionalization pattern and the Hall conductance. When the gauging can not be consistently done (i.e. the compatibility conditions can not be satisfied), the symmetry $G$ with the fractionalization pattern has an 't Hooft anomaly and we present a general method to determine the (3+1)d topological term for the anomaly. We provide many examples, including projective simple Lie groups and unitary groups to illustrate our approach.
Similar papers 1
October 16, 2014
We examine the interplay of symmetry and topological order in $2+1$ dimensional topological phases of matter. We present a definition of the \it topological symmetry \rm group, which characterizes the symmetry of the emergent topological quantum numbers of a topological phase, and we describe its relation with the microscopic symmetry of the underlying physical system. We derive a general framework to characterize and classify symmetry fractionalization in topological phases,...
October 2, 2020
We investigate the interactions of discrete zero-form and one-form global symmetries in (1+1)d theories. Focus is put on the interactions that the symmetries can have on each other, which in this low dimension result in 2-group symmetries or symmetry fractionalization. A large part of the discussion will be to understand a major feature in (1+1)d: the multiple sectors into which a theory decomposes. We perform gauging of the one-form symmetry, and remark on the effects this h...
December 26, 2023
We give the most general formulation for gauging of generalized symmetry, in terms of the language of higher linear algebra. In short, generalized gauging is just condensation of designated topological operators. Our framework covers all known variants of gauging, and may be used to discover unknown ones. In particular, we proved that gauging is always reversible: the original theory and the gauged theory are Morita equivalent; similarly, the original symmetry and the gauge s...
May 8, 2019
We classify symmetry fractionalization and anomalies in a (3+1)d U(1) gauge theory enriched by a global symmetry group $G$. We find that, in general, a symmetry-enrichment pattern is specified by 4 pieces of data: $\rho$, a map from $G$ to the duality symmetry group of this $\mathrm{U}(1)$ gauge theory which physically encodes how the symmetry permutes the fractional excitations, $\nu\in\mathcal{H}^2_{\rho}[G, \mathrm{U}_\mathsf{T}(1)]$, the symmetry actions on the electric c...
September 22, 2021
We develop a systematic theory of symmetry fractionalization for fermionic topological phases of matter in (2+1)D with a general fermionic symmetry group $G_f$. In general $G_f$ is a central extension of the bosonic symmetry group $G_b$ by fermion parity, $(-1)^F$, characterized by a non-trivial cohomology class $[\omega_2] \in \mathcal{H}^2(G_b, \mathbb{Z}_2)$. We show how the presence of local fermions places a number of constraints on the algebraic data that defines the ac...
June 30, 2022
We study ordinary, zero-form symmetry $G$ and its anomalies in a system with a one-form symmetry $\Gamma$. In a theory with one-form symmetry, the action of $G$ on charged line operators is not completely determined, and additional data, a fractionalization class, needs to be specified. Distinct choices of a fractionalization class can result in different values for the anomalies of $G$ if the theory has an anomaly involving $\Gamma$. Therefore, the computation of the 't Hoof...
May 30, 2024
We investigate fractionalization of non-invertible symmetry in (2+1)D topological orders. We focus on coset non-invertible symmetries obtained by gauging non-normal subgroups of invertible $0$-form symmetries. These symmetries can arise as global symmetries in quantum spin liquids, given by the quotient of the projective symmetry group by a non-normal subgroup as invariant gauge group. We point out that such coset non-invertible symmetries in topological orders can exhibit sy...
December 27, 2017
We study in general spacetime dimension the symmetry of the theory obtained by gauging a non-anomalous finite normal Abelian subgroup $A$ of a $\Gamma$-symmetric theory. Depending on how anomalous $\Gamma$ is, we find that the symmetry of the gauged theory can be i) a direct product of $G=\Gamma/A$ and a higher-form symmetry $\hat A$ with a mixed anomaly, where $\hat A$ is the Pontryagin dual of $A$; ii) an extension of the ordinary symmetry group $G$ by the higher-form symme...
April 25, 2019
We use the intrinsic one-form and two-form global symmetries of (3+1)$d$ bosonic field theories to classify quantum phases enriched by ordinary ($0$-form) global symmetry. Different symmetry-enriched phases correspond to different ways of coupling the theory to the background gauge field of the ordinary symmetry. The input of the classification is the higher-form symmetries and a permutation action of the $0$-form symmetry on the lines and surfaces of the theory. From these d...
October 5, 2022
Symmetry acting on a (2+1)$D$ topological order can be anomalous in the sense that they possess an obstruction to being realized as a purely (2+1)$D$ on-site symmetry. In this paper, we develop a (3+1)$D$ topological quantum field theory to calculate the anomaly indicators of a (2+1)$D$ topological order with a general symmetry group $G$, which may be discrete or continuous, Abelian or non-Abelian, contain anti-unitary elements or not, and permute anyons or not. These anomaly...