July 14, 2022
Similar papers 3
October 31, 2019
Standard neural machine translation (NMT) is on the assumption that the document-level context is independent. Most existing document-level NMT approaches are satisfied with a smattering sense of global document-level information, while this work focuses on exploiting detailed document-level context in terms of a memory network. The capacity of the memory network that detecting the most relevant part of the current sentence from memory renders a natural solution to model the ...
January 14, 2025
Long-range sequence modeling is a crucial aspect of natural language processing and time series analysis. However, traditional models like Recurrent Neural Networks (RNNs) and Transformers suffer from computational and memory inefficiencies, especially when dealing with long sequences. This paper introduces Logarithmic Memory Networks (LMNs), a novel architecture that leverages a hierarchical logarithmic tree structure to efficiently store and retrieve past information. LMNs ...
February 18, 2025
Memorization is a fundamental ability of Transformer-based Large Language Models, achieved through learning. In this paper, we propose a paradigm shift by designing an architecture to memorize text directly, bearing in mind the principle that memorization precedes learning. We introduce MeMo, a novel architecture for language modeling that explicitly memorizes sequences of tokens in layered associative memories. By design, MeMo offers transparency and the possibility of model...
June 15, 2023
Originally developed for natural language problems, transformer models have recently been widely used in offline reinforcement learning tasks. This is because the agent's history can be represented as a sequence, and the whole task can be reduced to the sequence modeling task. However, the quadratic complexity of the transformer operation limits the potential increase in context. Therefore, different versions of the memory mechanism are used to work with long sequences in a n...
August 30, 2024
Recent advancements in Large Language Models (LLMs) have yielded remarkable success across diverse fields. However, handling long contexts remains a significant challenge for LLMs due to the quadratic time and space complexity of attention mechanisms and the growing memory consumption of the key-value cache during generation. This work introduces MemLong: Memory-Augmented Retrieval for Long Text Generation, a method designed to enhance the capabilities of long-context languag...
January 15, 2025
This work introduces a novel Retention Layer mechanism for Transformer based architectures, addressing their inherent lack of intrinsic retention capabilities. Unlike human cognition, which can encode and dynamically recall symbolic templates, Generative Pretrained Transformers rely solely on fixed pretrained weights and ephemeral context windows, limiting their adaptability. The proposed Retention Layer incorporates a persistent memory module capable of real time data popula...
February 5, 2024
Long-context processing is a critical ability that constrains the applicability of large language models. Although there exist various methods devoted to enhancing the long-context processing ability of large language models (LLMs), they are developed in an isolated manner and lack systematic analysis and integration of their strengths, hindering further developments. In this paper, we introduce UniMem, a unified framework that reformulates existing long-context methods from ...
October 4, 2023
Transformers have demonstrated their success in various domains and tasks. However, Transformers struggle with long input sequences due to their limited capacity. While one solution is to increase input length, endlessly stretching the length is unrealistic. Furthermore, humans selectively remember and use only relevant information from inputs, unlike Transformers which process all raw data from start to end. We introduce Memoria, a general memory network that applies Hebbian...
February 1, 2025
Equipping large language models (LLMs) with latent-space memory has attracted increasing attention as they can extend the context window of existing language models. However, retaining information from the distant past remains a challenge. For example, MemoryLLM (Wang et al., 2024a), as a representative work with latent-space memory, compresses past information into hidden states across all layers, forming a memory pool of 1B parameters. While effective for sequence lengths u...
March 16, 2022
Language models typically need to be trained or finetuned in order to acquire new knowledge, which involves updating their weights. We instead envision language models that can simply read and memorize new data at inference time, thus acquiring new knowledge immediately. In this work, we extend language models with the ability to memorize the internal representations of past inputs. We demonstrate that an approximate kNN lookup into a non-differentiable memory of recent (key,...