July 1, 2022
Similar papers 2
May 31, 2021
The training of neural networks is usually monitored with a validation (holdout) set to estimate the generalization of the model. This is done instead of measuring intrinsic properties of the model to determine whether it is learning appropriately. In this work, we suggest studying the training of neural networks with Algebraic Topology, specifically Persistent Homology (PH). Using simplicial complex representations of neural networks, we study the PH diagram distance evoluti...
March 10, 2021
Through the use of examples, we explain one way in which applied topology has evolved since the birth of persistent homology in the early 2000s. The first applications of topology to data emphasized the global shape of a dataset, such as the three-circle model for $3 \times 3$ pixel patches from natural images, or the configuration space of the cyclo-octane molecule, which is a sphere with a Klein bottle attached via two circles of singularity. In these studies of global shap...
July 13, 2017
Inferring topological and geometrical information from data can offer an alternative perspective on machine learning problems. Methods from topological data analysis, e.g., persistent homology, enable us to obtain such information, typically in the form of summary representations of topological features. However, such topological signatures often come with an unusual structure (e.g., multisets of intervals) that is highly impractical for most machine learning techniques. Whil...
November 10, 2023
In this work we use the persistent homology method, a technique in topological data analysis (TDA), to extract essential topological features from the data space and combine them with deep learning features for classification tasks. In TDA, the concepts of complexes and filtration are building blocks. Firstly, a filtration is constructed from some complex. Then, persistent homology classes are computed, and their evolution along the filtration is visualized through the persis...
June 3, 2019
We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we construct this loss in a differentiable manner, such that the encoding learns to retain multi-scale connectivity information. We show th...
June 30, 2023
A ReLU neural network leads to a finite polyhedral decomposition of input space and a corresponding finite dual graph. We show that while this dual graph is a coarse quantization of input space, it is sufficiently robust that it can be combined with persistent homology to detect homological signals of manifolds in the input space from samples. This property holds for a variety of networks trained for a wide range of purposes that have nothing to do with this topological appli...
December 8, 2016
There have been several attempts to mathematically understand neural networks and many more from biological and computational perspectives. The field has exploded in the last decade, yet neural networks are still treated much like a black box. In this work we describe a structure that is inherent to a feed forward neural network. This will provide a framework for future work on neural networks to improve training algorithms, compute the homology of the network, and other appl...
November 2, 2018
We perform topological data analysis on the internal states of convolutional deep neural networks to develop an understanding of the computations that they perform. We apply this understanding to modify the computations so as to (a) speed up computations and (b) improve generalization from one data set of digits to another. One byproduct of the analysis is the production of a geometry on new sets of features on data sets of images, and use this observation to develop a method...
February 7, 2020
We propose PLLay, a novel topological layer for general deep learning models based on persistence landscapes, in which we can efficiently exploit the underlying topological features of the input data structure. In this work, we show differentiability with respect to layer inputs, for a general persistent homology with arbitrary filtration. Thus, our proposed layer can be placed anywhere in the network and feed critical information on the topological features of input data int...
November 25, 2021
Disobeying the classical wisdom of statistical learning theory, modern deep neural networks generalize well even though they typically contain millions of parameters. Recently, it has been shown that the trajectories of iterative optimization algorithms can possess fractal structures, and their generalization error can be formally linked to the complexity of such fractals. This complexity is measured by the fractal's intrinsic dimension, a quantity usually much smaller than t...