September 15, 2022
Similar papers 3
August 30, 2013
In this paper, we study the k-neighbor bootstrap percolation process on the d-dimensional grid [n]^d, and show that the minimum number of initial vertices that percolate is (1-d/k)n^d + O(n^{d-1})$ when d<=k<=2d. This confirms a conjecture of Pete.
July 13, 2023
Given a graph $G$ and assuming that some vertices of $G$ are infected, the $r$-neighbor bootstrap percolation rule makes an uninfected vertex $v$ infected if $v$ has at least $r$ infected neighbors. The $r$-percolation number, $m(G,r)$, of $G$ is the minimum cardinality of a set of initially infected vertices in $G$ such that after continuously performing the $r$-neighbor bootstrap percolation rule each vertex of $G$ eventually becomes infected. In this paper, we consider per...
September 10, 2019
The $r$-neighbour bootstrap process describes an infection process on a graph, where we start with a set of initially infected vertices and an uninfected vertex becomes infected as soon as it has $r$ infected neighbours. An inital set of infected vertices is called percolating if at the end of the bootstrap process all vertices are infected. We give Ore-type conditions that guarantee the existence of a small percolating set of size $l\leq 2r-2$ if the number of vertices $n$ o...
July 28, 2014
The bootstrap percolation (or threshold model) is a dynamic process modelling the propagation of an epidemic on a graph, where inactive vertices become active if their number of active neighbours reach some threshold. We study an optimization problem related to it, namely the determination of the minimal number of active sites in an initial configuration that leads to the activation of the whole graph under this dynamics, with and without a constraint on the time needed for t...
May 17, 2012
In r-neighbour bootstrap percolation on the vertex set of a graph G, vertices are initially infected independently with some probability p. At each time step, the infected set expands by infecting all uninfected vertices that have at least r infected neighbours. We study the distribution of the time t at which all vertices become infected. Given t = t(n) = o(log n/log log n), we prove a sharp threshold result for the probability that percolation occurs by time t in d-neighbou...
October 24, 2015
Graph bootstrap percolation is a simple cellular automaton introduced by Bollob\'as in 1968. Given a graph $H$ and a set $G \subseteq E(K_n)$ we initially "infect" all edges in $G$ and then, in consecutive steps, we infect every $e \in K_n$ that completes a new infected copy of $H$ in $K_n$. We say that $G$ percolates if eventually every edge in $K_n$ is infected. The extremal question about the size of the smallest percolating sets when $H = K_r$ was answered independently b...
May 10, 2016
Bootstrap percolation on a graph with infection threshold $r\in \mathbb{N}$ is an infection process, which starts from a set of initially infected vertices and in each step every vertex with at least $r$ infected neighbours becomes infected. We consider bootstrap percolation on the binomial random graph $G(n,p)$, which was investigated among others by Janson, \L uczak, Turova and Valier (2012). We improve their results by strengthening the probability bounds for the number of...
August 15, 2017
We introduce a simple method for proving lower bounds for the size of the smallest percolating set in a certain graph bootstrap process. We apply this method to determine the sizes of the smallest percolating sets in multidimensional tori and multidimensional grids (in particular hypercubes). The former answers a question of Morrison and Noel, and the latter provides an alternative and simpler proof for one of their main results.
October 16, 2010
In r-neighbour bootstrap percolation on a graph G, a (typically random) set A of initially 'infected' vertices spreads by infecting (at each time step) vertices with at least r already-infected neighbours. This process may be viewed as a monotone version of the Glauber dynamics of the Ising model, and has been extensively studied on the d-dimensional grid $[n]^d$. The elements of the set A are usually chosen independently, with some density p, and the main question is to dete...
August 25, 2015
We consider a dynamical process on a graph $G$, in which vertices are infected (randomly) at a rate which depends on the number of their neighbours that are already infected. This model includes bootstrap percolation and first-passage percolation as its extreme points. We give a precise description of the evolution of this process on the graph $\mathbb{Z}^2$, significantly sharpening results of Dehghanpour and Schonmann. In particular, we determine the typical infection time ...