ID: 2209.10157

Machine Learning on generalized Complete Intersection Calabi-Yau Manifolds

September 21, 2022

View on ArXiv

Similar papers 2

Deep multi-task mining Calabi-Yau four-folds

August 4, 2021

88% Match
Harold Erbin, Riccardo Finotello, ... , Tamaazousti Mohamed
Machine Learning
Algebraic Geometry

We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using...

Find SimilarView on arXiv

Constructing and Machine Learning Calabi-Yau Five-folds

October 24, 2023

88% Match
R. Alawadhi, D. Angella, ... , Gherardini T. Schettini
Machine Learning
Algebraic Geometry

We construct all possible complete intersection Calabi-Yau five-folds in a product of four or less complex projective spaces, with up to four constraints. We obtain $27068$ spaces, which are not related by permutations of rows and columns of the configuration matrix, and determine the Euler number for all of them. Excluding the $3909$ product manifolds among those, we calculate the cohomological data for $12433$ cases, i.e. $53.7 \%$ of the non-product spaces, obtaining $2375...

Find SimilarView on arXiv

Applying machine learning to the Calabi-Yau orientifolds with string vacua

December 9, 2021

87% Match
Xin Gao, Hao Zou
High Energy Physics - Theory

We use the machine learning technique to search the polytope which can result in an orientifold Calabi-Yau hypersurface and the "naive Type IIB string vacua". We show that neural networks can be trained to give a high accuracy for classifying the orientifold property and vacua based on the newly generated orientifold Calabi-Yau database with $h^{1,1}(X) \leq 6$ arXiv:2111.03078. This indicates the orientifold symmetry may already be encoded in the polytope structure. In the e...

Find SimilarView on arXiv

Machine learning Calabi-Yau metrics

October 18, 2019

87% Match
Anthony Ashmore, Yang-Hui He, Burt Ovrut
Algebraic Geometry
Machine Learning

We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...

Find SimilarView on arXiv

The Calabi-Yau Landscape: from Geometry, to Physics, to Machine-Learning

December 7, 2018

87% Match
Yang-Hui He
Algebraic Geometry
Mathematical Physics
Machine Learning

We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...

Find SimilarView on arXiv

On Machine Learning Complete Intersection Calabi-Yau 3-folds

April 17, 2024

87% Match
Kaniba Mady Keita
High Energy Physics - Theory

Gaussian Process Regression, Kernel Support Vector Regression, the random forest, extreme gradient boosting and the generalized linear model algorithms are applied to data of Complete Intersection Calabi-Yau 3-folds. It is shown that Gaussian process regression is the most suitable for learning the Hodge number h^(2,1)in terms of h^(1,1). The performance of this regression algorithm is such that the Pearson correlation coefficient for the validation set is R^2 = 0.9999999995 ...

Find SimilarView on arXiv

Calabi-Yau Four/Five/Six-folds as $\mathbb{P}^n_\textbf{w}$ Hypersurfaces: Machine Learning, Approximation, and Generation

November 28, 2023

86% Match
Edward Hirst, Tancredi Schettini Gherardini
Algebraic Geometry
Machine Learning

Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always prov...

Find SimilarView on arXiv

Numerical Metrics for Complete Intersection and Kreuzer-Skarke Calabi-Yau Manifolds

May 26, 2022

86% Match
Magdalena Larfors, Andre Lukas, ... , Schneider Robin
High Energy Physics - Theory

We introduce neural networks to compute numerical Ricci-flat CY metrics for complete intersection and Kreuzer-Skarke Calabi-Yau manifolds at any point in K\"ahler and complex structure moduli space, and introduce the package cymetric which provides computation realizations of these techniques. In particular, we develop and computationally realize methods for point-sampling on these manifolds. The training for the neural networks is carried out subject to a custom loss functio...

Find SimilarView on arXiv

Identifying equivalent Calabi--Yau topologies: A discrete challenge from math and physics for machine learning

February 15, 2022

86% Match
Vishnu Jejjala, Washington Taylor, Andrew Turner
Machine Learning

We review briefly the characteristic topological data of Calabi--Yau threefolds and focus on the question of when two threefolds are equivalent through related topological data. This provides an interesting test case for machine learning methodology in discrete mathematics problems motivated by physics.

Find SimilarView on arXiv
David S. Berman, Yang-Hui He, Edward Hirst
Algebraic Geometry
Machine Learning

We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an unanticipated almost linear dependence of the topological data on the weights. This then allows us to identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in predicting the topological parameters of the hypersurface from its weig...