ID: 2209.14991

Machine learning and invariant theory

September 29, 2022

View on ArXiv
Ben Blum-Smith, Soledad Villar
Statistics
Computer Science
Machine Learning
Machine Learning

Inspired by constraints from physical law, equivariant machine learning restricts the learning to a hypothesis class where all the functions are equivariant with respect to some group action. Irreducible representations or invariant theory are typically used to parameterize the space of such functions. In this article, we introduce the topic and explain a couple of methods to explicitly parameterize equivariant functions that are being used in machine learning applications. In particular, we explicate a general procedure, attributed to Malgrange, to express all polynomial maps between linear spaces that are equivariant under the action of a group $G$, given a characterization of the invariant polynomials on a bigger space. The method also parametrizes smooth equivariant maps in the case that $G$ is a compact Lie group.

Similar papers 1