ID: 2210.09614

The popularity gap

October 18, 2022

View on ArXiv

Similar papers 2

A structure theorem for sets of small popular doubling

June 1, 2015

84% Match
Przemysław Mazur
Combinatorics

In this paper we prove that every set $A\subset\mathbb{Z}$ satisfying the inequality $\sum_{x}\min(1_A*1_A(x),t)\le(2+\delta)t|A|$ for $t$ and $\delta$ in suitable ranges, then $A$ must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset $A\subset\mathbb{N}$ satisfies $|\mathbb{N}\setminus(A+A)|\ge k$; specifically we show that $\mathbb{P}(|\mathbb{N}\setminus(A+A)|\ge k)=\Theta(2...

Find SimilarView on arXiv

A new bound for $A(A + A)$ for large sets

November 23, 2020

83% Match
Aliaksei Semchankau
Number Theory

For $p$ being a large prime number, and $A \subset \mathbb{F}_p$ we prove the following: $(i)$ If $A(A+A)$ does not cover all nonzero residues in $\mathbb{F}_p$, then $|A| < p/8 + o(p)$. $(ii)$ If $A$ is both sum-free and satisfies $A = A^*$, then $|A| < p/9 + o(p)$. $(iii)$ If $|A| \gg \frac{\log\log{p}}{\sqrt{\log{p}}}p$, then $|A + A^*| \geqslant (1 - o(1))\min(2\sqrt{|A|p}, p)$. Here the constants $1/8$, $1/9$, and $2$ are the best possible. The proof involves \em...

Find SimilarView on arXiv

Popular Differences for Corners in Abelian Groups

September 26, 2019

83% Match
Aaron Berger
Combinatorics

For a compact abelian group $G$, a corner in $G \times G$ is a triple of points $(x,y)$, $(x,y+d)$, $(x+d,y)$. The classical corners theorem of Ajtai and Szemer\'edi implies that for every $\alpha > 0$, there is some $\delta > 0$ such that every subset $A \subset G \times G$ of density $\alpha$ contains a $\delta$ fraction of all corners in $G \times G$, as $x,y,d$ range over $G$. Recently, Mandache proved a "popular differences" version of this result in the finite field c...

Find SimilarView on arXiv

On the Bogolyubov-Ruzsa lemma

October 30, 2010

83% Match
Tom Sanders
Classical Analysis and ODEs
Number Theory

Our main result is that if A is a finite subset of an abelian group with |A+A| < K|A|, then 2A-2A contains an O(log^{O(1)} K)-dimensional coset progression M of size at least exp(-O(log^{O(1)} K))|A|.

Find SimilarView on arXiv

Small doubling in groups with moderate torsion

August 21, 2020

83% Match
Vsevolod F. Lev
Number Theory

We determine the structure of a finite subset $A$ of an abelian group given that $|2A|<3(1-\epsilon)|A|$, $\epsilon>0$; namely, we show that $A$ is contained either in a "small" one-dimensional coset progression, or in a union of fewer than $\epsilon^{-1}$ cosets of a finite subgroup. The bounds $3(1-\epsilon)|A|$ and $\epsilon^{-1}$ are best possible in the sense that none of them can be relaxed without tightened another one, and the estimate obtained for the size of the c...

Find SimilarView on arXiv

On sets with small doubling

March 11, 2007

83% Match
I. D. Shkredov
Number Theory
Combinatorics

Let G be an arbitrary Abelian group and let A be a finite subset of G. A has small additive doubling if |A+A| < K|A| for some K>0. These sets were studied in papers of G.A. Freiman, Y. Bilu, I. Ruzsa, M.C.--Chang, B. Green and T.Tao. In the article we prove that if we have some minor restrictions on K then for any set with small doubling there exists a set Lambda, |Lambda| << K log |A| such that |A\cap Lambda| >> |A| / K^{1/2 + c}, where c > 0. In contrast to the previous res...

Find SimilarView on arXiv

Small doubling in prime-order groups: from $2.4$ to $2.6$

December 7, 2019

83% Match
Vsevolod F. Lev, Ilya D. Shkredov
Number Theory

Improving upon the results of Freiman and Candela-Serra-Spiegel, we show that for a non-empty subset $A\subseteq\mathbb F_p$ with $p$ prime and $|A|<0.0045p$, (i) if $|A+A|<2.59|A|-3$ and $|A|>100$, then $A$ is contained in an arithmetic progression of size $|A+A|-|A|+1$, and (ii) if $|A-A|<2.6|A|-3$, then $A$ is contained in an arithmetic progression of size $|A-A|-|A|+1$. The improvement comes from using the properties of higher energies.

Find SimilarView on arXiv

Difference sets are not multiplicatively closed

February 7, 2016

83% Match
Ilya D. Shkredov
Number Theory
Combinatorics

We prove that for any finite set A of real numbers its difference set D:=A-A has large product set and quotient set, namely, |DD|, |D/D| \gg |D|^{1+c}, where c>0 is an absolute constant. A similar result takes place in the prime field F_p for sufficiently small D. It gives, in particular, that multiplicative subgroups of size less than p^{4/5-\eps} cannot be represented in the form A-A for any A from F_p.

Find SimilarView on arXiv

Patterns without a popular difference

April 16, 2020

83% Match
Ashwin Sah, Mehtaab Sawhney, Yufei Zhao
Combinatorics
Number Theory

Which finite sets $P \subseteq \mathbb{Z}^r$ with $|P| \ge 3$ have the following property: for every $A \subseteq [N]^r$, there is some nonzero integer $d$ such that $A$ contains $(\alpha^{|P|} - o(1))N^r$ translates of $d \cdot P = \{d p : p \in P\}$, where $\alpha = |A|/N^r$? Green showed that all 3-point $P \subseteq \mathbb{Z}$ have the above property. Green and Tao showed that 4-point sets of the form $P = \{a, a+b, a+c, a+b+c\} \subseteq \mathbb{Z}$ also have the prop...

Find SimilarView on arXiv

On unique sums in Abelian groups

March 27, 2023

83% Match
Benjamin Bedert
Combinatorics
Number Theory

Let $A$ be a subset of the cyclic group $\mathbf{Z}/p\mathbf{Z}$ with $p$ prime. It is a well-studied problem to determine how small $|A|$ can be if there is no unique sum in $A+A$, meaning that for every two elements $a_1,a_2\in A$, there exist $a_1',a_2'\in A$ such that $a_1+a_2=a_1'+a_2'$ and $\{a_1,a_2\}\neq \{a_1',a_2'\}$. Let $m(p)$ be the size of a smallest subset of $\mathbf{Z}/p\mathbf{Z}$ with no unique sum. The previous best known bounds are $\log p \ll m(p)\ll \sq...

Find SimilarView on arXiv