October 21, 2022
Similar papers 3
October 13, 2006
A method for compiling quantum algorithms into specific braiding patterns for non-Abelian quasiparticles described by the so-called Fibonacci anyon model is developed. The method is based on the observation that a universal set of quantum gates acting on qubits encoded using triplets of these quasiparticles can be built entirely out of three-stranded braids (three-braids). These three-braids can then be efficiently compiled and improved to any required accuracy using the Solo...
August 5, 2009
In three spatial dimensions, particles are limited to either bosonic or fermionic statistics. Two-dimensional systems, on the other hand, can support anyonic quasiparticles exhibiting richer statistical behaviours. An exciting proposal for quantum computation is to employ anyonic statistics to manipulate information. Since such statistical evolutions depend only on topological characteristics, the resulting computation is intrinsically resilient to errors. So-called non-Abeli...
April 18, 2007
In this article we present a pedagogical introduction of the main ideas and recent advances in the area of topological quantum computation. We give an overview of the concept of anyons and their exotic statistics, present various models that exhibit topological behavior, and we establish their relation to quantum computation. Possible directions for the physical realization of topological systems and the detection of anyonic behavior are elaborated.
June 15, 2009
An explicit lattice realization of a non-Abelian topological memory is presented. The correspondence between logical and physical states is seen directly by use of the stabilizer formalism. The resilience of the encoded states against errors is studied and compared to that of other memories. A set of non-topological operations are proposed to manipulate the encoded states, resulting in universal quantum computation. This work provides insight into the non-local encoding non-A...
April 2, 2024
We investigate a promising conformal field theory realization scheme for topological quantum computation based on the Fibonacci anyons, which are believed to be realized as quasiparticle excitations in the $\mathbb{Z}_3$ parafermion fractional quantum Hall state in the second Landau level with filling factor $\nu=12/5$. These anyons are non-Abelian and are known to be capable of universal topological quantum computation. The quantum information is encoded in the fusion channe...
April 28, 2009
We consider topological quantum memories for a general class of abelian anyon models defined on spin lattices. These are non-universal for quantum computation when restricting to topological operations alone, such as braiding and fusion. The effects of additional non-topological operations, such as spin measurements, are studied. These are shown to allow universal quantum computation, while still utilizing topological protection. Our work gives an insight into the relation be...
January 22, 2010
Topological quantum computation may provide a robust approach for encoding and manipulating information utilizing the topological properties of anyonic quasi-particle excitations. We develop an efficient means to map between dense and sparse representations of quantum information (qubits) and a simple construction of multi-qubit gates, for all anyon models from Chern-Simons-Witten SU(2)$_k$ theory that support universal quantum computation by braiding ($k\geq 3,\ k \neq 4$). ...
June 6, 2018
A fundamental question in the theory of quantum computation is to understand the ultimate space-time resource costs for performing a universal set of logical quantum gates to arbitrary precision. Here we demonstrate that non-Abelian anyons in Turaev-Viro quantum error correcting codes can be moved over a distance of order the code distance, and thus braided, by a constant depth local unitary quantum circuit followed by a permutation of qubits. Our gates are protected in the s...
September 13, 2006
Topological quantum states of matter, both Abelian and non-Abelian, are characterized by excitations whose wavefunctions undergo non-trivial statistical transformations as one excitation is moved (braided) around another. Topological quantum computation proposes to use the topological protection and the braiding statistics of a non-Abelian topological state to perform quantum computation. The enormous technological prospect of topological quantum computation provides new moti...
August 20, 2022
A quantum computer can perform exponentially faster than its classical counterpart. It works on the principle of superposition. But due to the decoherence effect, the superposition of a quantum state gets destroyed by the interaction with the environment. It is a real challenge to completely isolate a quantum system to make it free of decoherence. This problem can be circumvented by the use of topological quantum phases of matter. These phases have quasiparticles excitations ...