October 30, 2022
Similar papers 4
September 29, 2008
This report concerns the problem of dimensionality reduction through information geometric methods on statistical manifolds. While there has been considerable work recently presented regarding dimensionality reduction for the purposes of learning tasks such as classification, clustering, and visualization, these methods have focused primarily on Riemannian manifolds in Euclidean space. While sufficient for many applications, there are many high-dimensional signals which have ...
July 21, 2017
Existing dimensionality reduction methods are adept at revealing hidden underlying manifolds arising from high-dimensional data and thereby producing a low-dimensional representation. However, the smoothness of the manifolds produced by classic techniques over sparse and noisy data is not guaranteed. In fact, the embedding generated using such data may distort the geometry of the manifold and thereby produce an unfaithful embedding. Herein, we propose a framework for nonlinea...
December 3, 2021
Hyperbolic neural networks have been popular in the recent past due to their ability to represent hierarchical data sets effectively and efficiently. The challenge in developing these networks lies in the nonlinearity of the embedding space namely, the Hyperbolic space. Hyperbolic space is a homogeneous Riemannian manifold of the Lorentz group. Most existing methods (with some exceptions) use local linearization to define a variety of operations paralleling those used in trad...
May 15, 2009
We present a method to geometrize massive data sets from search engines query logs. For this purpose, a macrodynamic-like quantitative model of the Information Retrieval (IR) process is developed, whose paradigm is inspired by basic constructions of Einstein's general relativity theory in which all IR objects are uniformly placed in a common Room. The Room has a structure similar to Einsteinian spacetime, namely that of a smooth manifold. Documents and queries are treated as ...
November 30, 2023
Einstein's general relativity is the best available theory of gravity. In recent years, spectacular proofs of Einstein's theory have been conducted, which have aroused interest that goes far beyond the narrow circle of specialists. The aim of this work is to offer an elementary introduction to general relativity. In this first part, we introduce the geometric concepts that constitute the basis of Einstein's theory. In the second part we will use these concepts to explore the ...
April 1, 2023
The task of dimensionality reduction and visualization of high-dimensional datasets remains a challenging problem since long. Modern high-throughput technologies produce newer high-dimensional datasets having multiple views with relatively new data types. Visualization of these datasets require proper methodology that can uncover hidden patterns in the data without affecting the local and global structures within the data. To this end, however, very few such methodology exist...
June 3, 2014
Linear dimensionality reduction methods are a cornerstone of analyzing high dimensional data, due to their simple geometric interpretations and typically attractive computational properties. These methods capture many data features of interest, such as covariance, dynamical structure, correlation between data sets, input-output relationships, and margin between data classes. Methods have been developed with a variety of names and motivations in many fields, and perhaps as a r...
March 2, 2017
In this paper we introduce a new classification algorithm called Optimization of Distributions Differences (ODD). The algorithm aims to find a transformation from the feature space to a new space where the instances in the same class are as close as possible to one another while the gravity centers of these classes are as far as possible from one another. This aim is formulated as a multiobjective optimization problem that is solved by a hybrid of an evolutionary strategy and...
October 27, 2016
Supervised dimensionality reduction has emerged as an important theme in the last decade. Despite the plethora of models and formulations, there is a lack of a simple model which aims to project the set of patterns into a space defined by the classes (or categories). To this end, we set up a model in which each class is represented as a 1D subspace of the vector space formed by the features. Assuming the set of classes does not exceed the cardinality of the features, the mode...
April 16, 2023
Dimensionality reduction (DR) algorithms compress high-dimensional data into a lower dimensional representation while preserving important features of the data. DR is a critical step in many analysis pipelines as it enables visualisation, noise reduction and efficient downstream processing of the data. In this work, we introduce the ProbDR variational framework, which interprets a wide range of classical DR algorithms as probabilistic inference algorithms in this framework. P...