November 14, 2022
We revisit the scaling properties of growing spheres randomly seeded in d=2,3 and 4 dimensions using a mean-field approach. We model the insertion probability without assuming a priori a functional form for the radius distribution. The functional form of the insertion probability shows an unprecedented agreement with numerical simulations in d=2, 3 and 4 dimensions. We infer from the insertion probability the scaling behavior of the Random Apollonian Packing and its fractal dimensions. The validity of our model is assessed with sets of 256 simulations each containing 20 million spheres in 2, 3 and 4 dimensions.
Similar papers 1
November 22, 2011
The Apollonian packings (APs) are fractals that result from a space-filling procedure with spheres. We discuss the finite size effects for finite intervals $s\in[s_\mathrm{min},s_\mathrm{max}]$ between the largest and the smallest sizes of the filling spheres. We derive a simple analytical generalization of the scale-free laws, which allows a quantitative study of such \textit{physical fractals}. To test our result, a new efficient space-filling algorithm has been developed w...
March 12, 2002
We consider growing spheres seeded by random injection in time and space. Growth stops when two spheres meet leading eventually to a jammed state. We study the statistics of growth limited by packing theoretically in d dimensions and via simulation in d=2, 3, and 4. We show how a broad class of such models exhibit distributions of sphere radii with a universal exponent. We construct a scaling theory that relates the fractal structure of these models to the decay of their pore...
We adapt a recent theory for the random close packing of polydisperse spheres in three dimensions [R. S. Farr and R. D. Groot, J. Chem. Phys. {\bf 131} 244104 (2009)] in order to predict the Hausdorff dimension $d_{A}$ of the Apollonian gasket in dimensions 2 and above. Our approximate results agree with published values in $2$ and $3$ dimensions to within $0.05%$ and $0.6%$ respectively, and we provide predictions for dimensions $4$ to $8$.
April 19, 1996
The fractal properties of models of randomly placed $n$-dimensional spheres ($n$=1,2,3) are studied using standard techniques for calculating fractal dimensions in empirical data (the box counting and Minkowski-sausage techniques). Using analytical and numerical calculations it is shown that in the regime of low volume fraction occupied by the spheres, apparent fractal behavior is observed for a range of scales between physically relevant cut-offs. The width of this range, ty...
August 16, 2006
We present the first study of disordered jammed hard-sphere packings in four-, five- and six-dimensional Euclidean spaces. Using a collision-driven packing generation algorithm, we obtain the first estimates for the packing fractions of the maximally random jammed (MRJ) states for space dimensions $d=4$, 5 and 6 to be $\phi_{MRJ} \simeq 0.46$, 0.31 and 0.20, respectively. To a good approximation, the MRJ density obeys the scaling form $\phi_{MRJ}= c_1/2^d+(c_2 d)/2^d$, where ...
May 6, 2013
We present an efficient Monte Carlo method for the lattice sphere packing problem in d dimensions. We use this method to numerically discover de novo the densest lattice sphere packing in dimensions 9 through 20. Our method goes beyond previous methods not only in exploring higher dimensions but also in shedding light on the statistical mechanics underlying the problem in question. We observe evidence of a phase transition in the thermodynamic limit $d\to\infty$. In the dimen...
July 26, 2013
Finding the optimal random packing of non-spherical particles is an open problem with great significance in a broad range of scientific and engineering fields. So far, this search has been performed only empirically on a case-by-case basis, in particular, for shapes like dimers, spherocylinders and ellipsoids of revolution. Here, we present a mean-field formalism to estimate the packing density of axisymmetric non-spherical particles. We derive an analytic continuation from t...
August 17, 2006
Employing numerical and theoretical methods, we investigate the structural characteristics of random sequential addition (RSA) of congruent spheres in $d$-dimensional Euclidean space $\mathbb{R}^d$ in the infinite-time or saturation limit for the first six space dimensions ($1 \le d \le 6$). Specifically, we determine the saturation density, pair correlation function, cumulative coordination number and the structure factor in each =of these dimensions. We find that for $2 \le...
March 11, 2006
We introduce a generalization of the well-known random sequential addition (RSA) process for hard spheres in $d$-dimensional Euclidean space $\mathbb{R}^d$. We show that all of the $n$-particle correlation functions of this nonequilibrium model, in a certain limit called the "ghost" RSA packing, can be obtained analytically for all allowable densities and in any dimension. This represents the first exactly solvable disordered sphere-packing model in arbitrary dimension. The f...
September 12, 2013
We study, via the replica method of disordered systems, the packing problem of hard-spheres with a square-well attractive potential when the space dimensionality, d, becomes infinitely large. The phase diagram of the system exhibits reentrancy of the liquid-glass transition line, two distinct glass states and a glass-to-glass transition, much similar to what has been previously obtained by Mode-Coupling Theory, numerical simulations and experiments. The presence of the phase ...