December 17, 2022
Reservoir Computing is an emerging machine learning framework which is a versatile option for utilising physical systems for computation. In this paper, we demonstrate how a single node reservoir, made of a simple electronic circuit, can be employed for computation and explore the available options to improve the computational capability of the physical reservoirs. We build a reservoir computing system using a memristive chaotic oscillator as the reservoir. We choose two of the available hyperparameters to find the optimal working regime for the reservoir, resulting in two reservoir versions. We compare the performance of both the reservoirs in a set of three non-temporal tasks: approximating two non-chaotic polynomials and a chaotic trajectory of the Lorenz time series. We also demonstrate how the dynamics of the physical system plays a direct role in the reservoir's hyperparameters and hence in the reservoir's prediction ability.
Similar papers 1
Reservoir computing is a machine learning paradigm that uses a high-dimensional dynamical system, or \emph{reservoir}, to approximate and predict time series data. The scale, speed and power usage of reservoir computers could be enhanced by constructing reservoirs out of electronic circuits, and several experimental studies have demonstrated promise in this direction. However, designing quality reservoirs requires a precise understanding of how such circuits process and store...
December 12, 2024
There is a growing interest in the development of artificial neural networks that are implemented in a physical system. A major challenge in this context is that these networks are difficult to train since training here would require a change of physical parameters rather than simply of coefficients in a computer program. For this reason, reservoir computing, where one employs high-dimensional recurrent networks and trains only the final layer, is widely used in this context....
December 1, 2021
Memristive systems and devices are potentially available for implementing reservoir computing (RC) systems applied to pattern recognition. However, the computational ability of memristive RC systems depends on intertwined factors such as system architectures and physical properties of memristive elements, which complicates identifying the key factor for system performance. Here we develop a simulation platform for RC with memristor device networks, which enables testing diffe...
August 17, 2024
Efficient and accurate prediction of physical systems is important even when the rules of those systems cannot be easily learned. Reservoir computing, a type of recurrent neural network with fixed nonlinear units, is one such prediction method and is valued for its ease of training. Organic electrochemical transistors (OECTs) are physical devices with nonlinear transient properties that can be used as the nonlinear units of a reservoir computer. We present a theoretical frame...
November 25, 2013
Unconventional computing explores multi-scale platforms connecting molecular-scale devices into networks for the development of scalable neuromorphic architectures, often based on new materials and components with new functionalities. We review some work investigating the functionalities of locally connected networks of different types of switching elements as computational substrates. In particular, we discuss reservoir computing with networks of nonlinear nanoscale componen...
October 19, 2021
To predict the future evolution of dynamical systems purely from observations of the past data is of great potential application. In this work, a new formulated paradigm of reservoir computing is proposed for achieving model-free predication for both low-dimensional and very large spatiotemporal chaotic systems. Compared with traditional reservoir computing models, it is more efficient in terms of predication length, training data set required and computational expense. By ta...
August 15, 2018
Reservoir computing is a computational framework suited for temporal/sequential data processing. It is derived from several recurrent neural network models, including echo state networks and liquid state machines. A reservoir computing system consists of a reservoir for mapping inputs into a high-dimensional space and a readout for pattern analysis from the high-dimensional states in the reservoir. The reservoir is fixed and only the readout is trained with a simple method su...
October 25, 2023
Recent advancements in reservoir computing research have created a demand for analog devices with dynamics that can facilitate the physical implementation of reservoirs, promising faster information processing while consuming less energy and occupying a smaller area footprint. Studies have demonstrated that dynamic memristors, with nonlinear and short-term memory dynamics, are excellent candidates as information-processing devices or reservoirs for temporal classification and...
June 22, 2023
Memristive reservoirs draw inspiration from a novel class of neuromorphic hardware known as nanowire networks. These systems display emergent brain-like dynamics, with optimal performance demonstrated at dynamical phase transitions. In these networks, a limited number of electrodes are available to modulate system dynamics, in contrast to the global controllability offered by neuromorphic hardware through random access memories. We demonstrate that the learn-to-learn framewor...
December 20, 2023
Reservoir computing is a machine learning framework where the readouts from a nonlinear system (the reservoir) are trained so that the output from the reservoir, when forced with an input signal, reproduces a desired output signal. A common implementation of reservoir computers is to use a recurrent neural network as the reservoir. The design of this network can have significant effects on the performance of the reservoir computer. In this paper we study the effect of the nod...