August 31, 2016
Zaremba's Conjecture concerns the formation of continued fractions with partial quotients restricted to a given alphabet. In order to answer the numerous questions that arrive from this conjecture, it is best to consider a semi-group, often denoted $\Gamma_{A}$, which arises naturally as a subset of $SL_2(\mathbb{Z})$ when considering finite continued fractions. To translate back from this semi-group into rational numbers, we select a projection mapping satisfying certain cri...
October 25, 2022
In this paper, we study distributional properties of the sequence of partial quotients in the continued fraction expansion of fractions $a/N$, where $N$ is fixed and $a$ runs through the set of mod $N$ residue classes which are coprime with $N$. Our methods cover statistics such as the sum of partial quotients, the maximal partial quotient, the empirical distribution of partial quotients, Dedekind sums, and much more. We prove a sharp concentration inequality for the sum of p...
February 21, 2012
We discuss several open problems in Diophantine approximation. Among them there are famous Littlewood's and Zaremba's conjectures as well as some new and not so famous problems.
October 27, 2015
Let $\F_p$ be the field of residue classes modulo a large prime $p$. The present paper is devoted to the problem of representability of elements of $\F_p$ as sums of fractions of the form $x/y$ with $x,y$ from short intervals of $\F_p$.
January 7, 2019
In this paper we obtain a sharp upper bound for the number of solutions to a certain diophantine inequality involving fractions with power denominator. This problem is motivated by a conjecture of Zhao concerning the spacing of such fractions in short intervals and the large sieve for power modulus. As applications of our estimate we show Zhao's conjecture is true except for a set of small measure and give a new $\ell_1 \rightarrow \ell_2$ large sieve inequality for power mod...
September 8, 2011
We give certain generalization of Niederreiter's result concerning famous Zaremba's conjecture on existence of rational numbers with bounded partial quotients.
April 17, 2016
Zaremba's conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction $\frac{b}{d}=[d_1,d_2,\ldots,d_{k}],$ with all partial quotients $d_1,d_2,\ldots,d_{k}$ being bounded by an absolute constant $A.$ Recently (in 2011) several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The easiest of them states that the set of numbers satisfying Zaremba's conjecture with...
March 13, 2017
In the theory of continued fractions, Zaremba's conjecture states that there is a positive integer $M$ such that each integer is the denominator of a convergent of an ordinary continued fraction with partial quotients bounded by $M$. In this paper, to each such $M$ we associate a regular sequence---in the sense of Allouche and Shallit---and establish various properties and results concerning the generating function of the regular sequence. In particular, we determine the mini...
May 25, 2012
We show that, for any fixed $\varepsilon > 0$ and almost all primes $p$, the $g$-ary expansion of any fraction $m/p$ with $\gcd(m,p) = 1$ contains almost all $g$-ary strings of length $k < (5/24 - \varepsilon) \log_g p$. This complements a result of J. Bourgain, S. V. Konyagin, and I. E. Shparlinski that asserts that, for almost all primes, all $g$-ary strings of length $k < (41/504 -\varepsilon) \log_g p$ occur in the $g$-ary expansion of $m/p$.
October 14, 2013
We prove there exists a density one subset $\dd \subset \N$ such that each $n \in \dd$ is the denominator of a finite continued fraction with partial quotients bounded by 5.