January 31, 2023
Similar papers 2
July 11, 2023
We study charge and heat transport in the square lattice Hubbard model at strong coupling using the finite-temperature Lanczos method. We construct the diffusion matrix and estimate the effect of thermoelectric terms on diffusive and hydrodynamic time evolution. The thermoelectric terms prevent the interpretation of the diffusion in terms of a single time scale. We discuss our results in relation to cold-atom experiments and measurements of heat conductivity based on the meas...
August 19, 2024
Analytical results on the correlation functions of strongly correlated many-body systems are rare in the literature and their importance cannot be overstated. We present determinant representations for the space-, time-, and temperature-dependent correlation functions of the strongly interacting one-dimensional Hubbard model in the presence of an external trapping potential. These representations are exact and valid in both equilibrium and nonequilibrium scenarios like the on...
October 8, 2002
The asymptotics of the equal-time one-particle Green's function for the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for the genuinely fermionic nature of the one-particle Green's function, we employ the fermionic formulation of the QTM based on the fermionic R-operator of the Hubbard model. The...
November 11, 2020
We study the spin diffusion and spin conductivity in the square lattice Hubbard model by using the finite-temperature Lanczos method. We show that the spin diffusion behaves differently from the charge diffusion and has a nonmonotonic $T$ dependence. This is due to a progressive liberation of charges that contribute to spin transport and enhance it beyond that active at low temperature due to the Heisenberg exchange. We further show that going away from half-filling and zero ...
October 17, 2017
We study the dynamical response of the half-filled one-dimensional(1d) Hubbard model for a range of interaction strengths $U$ and temperatures $T$ by a combination of numerical and analytical techniques. Using time-dependent density matrix renormalization group (tDMRG) computations we find that the single-particle spectral function undergoes a crossover to a spin-incoherent Luttinger liquid regime at temperatures $T \sim J=4t^2/U$ for sufficiently large $U > 4t$. At smaller v...
December 22, 2000
Some exact results are given, that connect, for a general magnitude of the interaction term $U$, the repulsive and attractive Hubbard model, in terms of the eigenspectra and quantum diffusion properties. In particular, it is shown that, for some initial conditions, the quantum evolution cannot differenciate between the attractive and repulsive models. These results apply to both fermionic and bosonic models, in any dimension and for general filling, as far as the underlying s...
March 6, 2020
The last decade has witnessed an impressive progress in the theoretical understanding of transport properties of clean, one-dimensional quantum lattice systems. Many physically relevant models in one dimension are Bethe-ansatz integrable, including the anisotropic spin-1/2 Heisenberg (also called spin-1/2 XXZ chain) and the Fermi-Hubbard model. Nevertheless, practical computations of, for instance, correlation functions and transport coefficients pose hard problems from both ...
February 27, 2018
Strongly correlated materials are expected to feature unconventional transport properties, such that charge, spin, and heat conduction are potentially independent probes of the dynamics. In contrast to charge transport, the measurement of spin transport in such materials is highly challenging. We observed spin conduction and diffusion in a system of ultracold fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin diffusion is driven b...
June 30, 1999
Recent developments in the analysis of finite temperature dissipationless transport in integrable quantum many body problems are presented. In particular, we will discuss: (i) the role played by the conservation laws in systems as the spin 1/2 Heisenberg chain and the one-dimensional Hubbard model, (ii) exact results obtained using the Bethe ansatz method on the long time decay of current correlations.
August 6, 2015
We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function of system size. The low-frequency d...