February 6, 2023
Universality is a key hypothesis in mechanistic interpretability -- that different models learn similar features and circuits when trained on similar tasks. In this work, we study the universality hypothesis by examining how small neural networks learn to implement group composition. We present a novel algorithm by which neural networks may implement composition for any finite group via mathematical representation theory. We then show that networks consistently learn this algorithm by reverse engineering model logits and weights, and confirm our understanding using ablations. By studying networks of differing architectures trained on various groups, we find mixed evidence for universality: using our algorithm, we can completely characterize the family of circuits and features that networks learn on this task, but for a given network the precise circuits learned -- as well as the order they develop -- are arbitrary.
Similar papers 1
December 11, 2023
We use the group Fourier transform over the symmetric group $S_n$ to reverse engineer a 1-layer feedforward network that has "grokked" the multiplication of $S_5$ and $S_6$. Each model discovers the true subgroup structure of the full group and converges on circuits that decompose the group multiplication into the multiplication of the group's conjugate subgroups. We demonstrate the value of using the symmetries of the data and models to understand their mechanisms and hold u...
October 10, 2024
A recent line of work in mechanistic interpretability has focused on reverse-engineering the computation performed by neural networks trained on the binary operation of finite groups. We investigate the internals of one-hidden-layer neural networks trained on this task, revealing previously unidentified structure and producing a more complete description of such models in a step towards unifying the explanations of previous works (Chughtai et al., 2023; Stander et al., 2024)....
December 13, 2023
In this work, we formally prove that, under certain conditions, if a neural network is invariant to a finite group then its weights recover the Fourier transform on that group. This provides a mathematical explanation for the emergence of Fourier features -- a ubiquitous phenomenon in both biological and artificial learning systems. The results hold even for non-commutative groups, in which case the Fourier transform encodes all the irreducible unitary group representations. ...
November 13, 2023
Understanding the internal representations learned by neural networks is a cornerstone challenge in the science of machine learning. While there have been significant recent strides in some cases towards understanding how neural networks implement specific target functions, this paper explores a complementary question -- why do networks arrive at particular computational strategies? Our inquiry focuses on the algebraic learning tasks of modular addition, sparse parities, and ...
January 16, 2025
Group theory has been used in machine learning to provide a theoretically grounded approach for incorporating known symmetry transformations in tasks from robotics to protein modeling. In these applications, equivariant neural networks use known symmetry groups with predefined representations to learn over geometric input data. We propose MatrixNet, a neural network architecture that learns matrix representations of group element inputs instead of using predefined representat...
December 20, 2014
Why does Deep Learning work? What representations does it capture? How do higher-order representations emerge? We study these questions from the perspective of group theory, thereby opening a new approach towards a theory of Deep learning. One factor behind the recent resurgence of the subject is a key algorithmic step called pre-training: first search for a good generative model for the input samples, and repeat the process one layer at a time. We show deeper implications ...
October 8, 2020
We introduce an algorithm for designing Neural Group Actions, collections of deep neural network architectures which model symmetric transformations satisfying the laws of a given finite group. This generalizes involutive neural networks $\mathcal{N}$, which satisfy $\mathcal{N}(\mathcal{N}(x))=x$ for any data $x$, the group law of $\mathbb{Z}_2$. We show how to optionally enforce an additional constraint that the group action be volume-preserving. We conjecture, by analogy t...
February 7, 2020
Group invariant and equivariant Multilayer Perceptrons (MLP), also known as Equivariant Networks, have achieved remarkable success in learning on a variety of data structures, such as sequences, images, sets, and graphs. Using tools from group theory, this paper proves the universality of a broad class of equivariant MLPs with a single hidden layer. In particular, it is shown that having a hidden layer on which the group acts regularly is sufficient for universal equivariance...
May 27, 2022
Symmetry is a fundamental tool in the exploration of a broad range of complex systems. In machine learning symmetry has been explored in both models and data. In this paper we seek to connect the symmetries arising from the architecture of a family of models with the symmetries of that family's internal representation of data. We do this by calculating a set of fundamental symmetry groups, which we call the intertwiner groups of the model. We connect intertwiner groups to a m...
April 8, 2015
Why does Deep Learning work? What representations does it capture? How do higher-order representations emerge? We study these questions from the perspective of group theory, thereby opening a new approach towards a theory of Deep learning. One factor behind the recent resurgence of the subject is a key algorithmic step called {\em pretraining}: first search for a good generative model for the input samples, and repeat the process one layer at a time. We show deeper implicat...