February 9, 2023
Similar papers 2
January 17, 2018
Two-dimensional (2D) structures of boron atoms so called borophene, have recently attracted remarkable attention. In a latest exciting experimental study, a hydrogenated borophene structure was realized. Motivated by this success, we conducted extensive first-principles calculations to explore the mechanical, thermal conduction, electronic and optical responses of borophene hydride. The mechanical response of borophene hydride was found to be anisotropic in which it can yield...
March 5, 2018
The past decade has witnessed numerous discoveries of two-dimensional (2D) semimetals and insulators, whereas 2D metals are rarely identified. Borophene, a monolayer boron sheet, has recently emerged as a perfect 2D metal with unique structure and electronic properties. Here we study collective excitations in borophene, which exhibit two major plasmon modes with low damping rates extending from infrared to ultraviolet regime. The anisotropic 1D plasmon originates from electro...
September 25, 2018
Recently, the crystal symmetry-protected topological semimetals have aroused extensive interests, especially for the nonsymmorphic symmetry-protected one. We list the possible nonmagnetic topological semimetals and develop their k.p Hamiltonian in all layer groups with multiple screw axes in the absence of spin-orbital coupling. We find a novel cat's cradle-like topological semimetal phase, which looks like multiple hourglass-like band structures staggered together. Furthermo...
May 30, 2022
Two-dimensional boron monolayer (borophene) stands out from the two-dimensional atomic layered materials due to its structural flexibility, tunable electronic and mechanical properties from a large number of allotropic materials. The stability of pristine borophene polymorphs could possibly be improved via hydrogenation with atomic hydrogen (referred to as borophane). However, the precise adsorption structures and the underlying mechanism are still elusive. Employing first-pr...
February 15, 2022
Principles of design to create dynamically stable transition metal, lanthanide, and actinide based low-dimensional borides are presented. A charge transfer analysis of donor metal atoms to electron deficient honeycombed B lattices allows to predict complex covalent heterostructures hosting Dirac states. The applicable guidelines are supported with the analysis of phonon spectra computed with first-principles calculations to demonstrate the physical stability of nanometer-thic...
August 18, 2021
We decipher the microscopic mechanism of the formation of tilt in the two-dimensional Dirac cone of $8Pmmn$ borphene. In our ab-initio calculations, we identify relevant low-energy degrees of freedom on the $8Pmmn$ lattice and find that these atomic orbitals reside on an effective honeycomb lattice (inner sites), while the high-energy degrees of freedom reside on the rest of the $8Pmmn$ lattice (ridge sites). Integrating out the high-energy atomic orbitals, gives rise to rema...
November 18, 2019
We report a previously unknown monolayer borophene allotrope and we call it super-B with a flat structure based on the ab initio calculations. It has good thermal, dynamical, and mechanical stability compared with many other typical borophenes. We find that super-B has a fascinating chemical bond environment consisting of standard sp, sp2 hybridizations, and delocalized five-center three-electron $\pi$ bond, called $\pi$(5c-3e). This particular electronic structure plays a pi...
April 29, 2015
Graphene is famous for being a host of 2D Dirac fermions. However, spin-orbit coupling introduces a small gap, so that graphene is formally a quantum spin hall insulator. Here we present symmetry-protected 2D Dirac semimetals, which feature Dirac cones at high-symmetry points that are \emph{not} gapped by spin-orbit interactions, and exhibit behavior distinct from both graphene and 3D Dirac semimetals. Using a two-site tight-binding model, we construct representatives of thre...
June 3, 2013
This is a short review of two-dimensional Dirac fermions in graphene and similar systems such as boron nitride, quasi-2D organic salts $\alpha$-(BEDT-TTF)$_2$I$_3$, artificial graphene with cold atoms in optical lattices, etc. The emphasis is on magnetic field properties (semi-classical quantization of cyclotron orbits, Landau levels, quantum Hall effect, magneto-plasmons, magneto-phonon resonance, magneto-transport, etc.) and on topological properties (Berry phase, winding n...
May 27, 2018
The honeycomb lattice sets the basic arena for numerous ideas to implement electronic, photonic, or phononic topological bands in (meta-)materials. Novel opportunities to manipulate Dirac electrons in graphene through band engineering arise from superlattice potentials as induced by a substrate such as hexagonal boron-nitride. Making use of the general form of a weak substrate potential as dictated by symmetry, we analytically derive the low-energy minibands of the superstruc...