March 27, 2023
Similar papers 2
We consider a classic model known as bootstrap percolation on the $n \times n$ square grid. To each vertex of the grid we assign an initial state, infected or healthy, and then in consecutive rounds we infect every healthy vertex that has at least $2$ already infected neighbours. We say that percolation occurs if the whole grid is eventually infected. In this paper, contributing to a recent series of extremal results in this field, we prove that the maximum time a bootstrap p...
October 23, 2021
Following Bradonji\'c and Saniee, we study a model of bootstrap percolation on the Gilbert random geometric graph on the $2$-dimensional torus. In this model, the expected number of vertices of the graph is $n$, and the expected degree of a vertex is $a\log n$ for some fixed $a>1$. Each vertex is added with probability $p$ to a set $A_0$ of initially infected vertices. Vertices subsequently become infected if they have at least $ \theta a \log n $ infected neighbours. Here $p...
September 19, 2012
We study the percolation time of the $r$-neighbour bootstrap percolation model on the discrete torus $(\Z/n\Z)^d$. For $t$ at most a polylog function of $n$ and initial infection probabilities within certain ranges depending on $t$, we prove that the percolation time of a random subset of the torus is exactly equal to $t$ with high probability as $n$ tends to infinity. Our proof rests crucially on three new extremal theorems that together establish an almost complete understa...
January 22, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^d$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,\dots, d\}$, where $a_1\le a_2\le \dots \le a_d$. Suppose we infect any healthy vertex $v\in [L]^d$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine the $(d-1)$-times iterated log...
February 13, 2007
In majority bootstrap percolation on a graph G, an infection spreads according to the following deterministic rule: if at least half of the neighbours of a vertex v are already infected, then v is also infected, and infected vertices remain infected forever. Percolation occurs if eventually every vertex is infected. The elements of the set of initially infected vertices, A \subset V(G), are normally chosen independently at random, each with probability p, say. This process ...
March 28, 2006
In the modified bootstrap percolation model, sites in the cube {1,...,L}^d are initially declared active independently with probability p. At subsequent steps, an inactive site becomes active if it has at least one active nearest neighbour in each of the d dimensions, while an active site remains active forever. We study the probability that the entire cube is eventually active. For all d>=2 we prove that as L\to\infty and p\to 0 simultaneously, this probability converges to ...
June 13, 2008
We study a variant of bootstrap percolation in which growth is restricted to a single active cluster. Initially there is a single active site at the origin, while other sites of Z^2 are independently occupied with small probability p, otherwise empty. Subsequently, an empty site becomes active by contact with 2 or more active neighbors, and an occupied site becomes active if it has an active site within distance 2. We prove that the entire lattice becomes active with probabil...
May 29, 2015
Bootstrap percolation is a type of cellular automaton on graphs, introduced as a simple model of the dynamics of ferromagnetism. Vertices in a graph can be in one of two states: `healthy' or `infected' and from an initial configuration of states, healthy vertices become infected by local rules. While the usual bootstrap processes are monotone in the sets of infected vertices, in this paper, a modification is examined in which infected vertices can return to a healthy state. V...
February 6, 2007
In this note we analyze an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.
March 19, 2024
We investigate the behaviour of $r$-neighbourhood bootstrap percolation on the binomial $k$-uniform random hypergraph $H_k(n,p)$ for given integers $k\geq 2$ and $r\geq 2$. In $r$-neighbourhood bootstrap percolation, infection spreads through the hypergraph, starting from a set of initially infected vertices, and in each subsequent step of the process every vertex with at least $r$ infected neighbours becomes infected. For our analysis the set of initially infected vertices i...