May 7, 2012
Let p > 4 be a prime. We show that the largest subset of F_p^n with no 4-term arithmetic progressions has cardinality << N(log N)^{-c}, where c = 2^{-22} and N := p^n. A result of this type was claimed in a previous paper by the authors and published in Proc. London Math. Society. Unfortunately the proof had a gap, and we issue an erratum for that paper here. Our new argument is different and significantly shorter. In fact we prove a stronger result, which can be viewed as a ...
March 15, 2007
We use topological ideas to show that, assuming the conjecture of Erd\"(o)s on subsets of positive integers having no $p$ terms in arithmetic progression (A. P.), there must exist a subset $M_p$ of positive integers with no $p$ terms in A. P. with the property that among all such subsets, $M_p$ maximizes the sum of the reciprocals of its elements.
August 25, 2018
A conjecture of Freiman gives an exact formula for the largest volume of a finite set $A$ of integers with given cardinality $k = |A|$ and doubling $T = |2A|$. The formula is known to hold when $T \le 3k-4$, for some small range over $3k-4$ and for families of structured sets called chains. In this paper we extend the formula to sets of every dimension and prove it for sets composed of three segments, giving structural results for the extremal case. A weaker extension to sets...
April 1, 2015
We study extremal problems about sets of integers that do not contain sumsets with summands of prescribed size. We analyse both finite sets and infinite sequences. We also study the connections of these problems with extremal problems of graphs and hypergraphs.
March 13, 2018
Let $A \subset \mathbb{R}$ be finite. We quantitatively improve the Balog-Wooley decomposition, that is $A$ can be partitioned into sets $B$ and $C$ such that $$\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.$$ We use similar decompositions to improve upon various sum-product estimates. For instance, we show $$ |A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.$$
July 7, 2006
Fix a density d in (0,1], and let F_p^n be a finite field, where we think of p fixed and n tending to infinity. Let S be any subset of F_p^n having the minimal number of three-term progressions, subject to the constraint |S| is at least dp^n. We show that S must have some structure, and that up to o(p^n) elements, it is a union of a small number of cosets of a subspace of dimension n-o(n).
December 7, 2019
Improving upon the results of Freiman and Candela-Serra-Spiegel, we show that for a non-empty subset $A\subseteq\mathbb F_p$ with $p$ prime and $|A|<0.0045p$, (i) if $|A+A|<2.59|A|-3$ and $|A|>100$, then $A$ is contained in an arithmetic progression of size $|A+A|-|A|+1$, and (ii) if $|A-A|<2.6|A|-3$, then $A$ is contained in an arithmetic progression of size $|A-A|-|A|+1$. The improvement comes from using the properties of higher energies.
August 11, 2012
In the paper we find new inequalities involving the intersections $A\cap (A-x)$ of shifts of some subset $A$ from an abelian group. We apply the inequalities to obtain new upper bounds for the additive energy of multiplicative subgroups and convex sets and also a series another results on the connection of the additive energy and so--called higher moments of convolutions. Besides we prove new theorems on multiplicative subgroups concerning lower bounds for its doubling consta...
September 20, 2017
We adapt the idea of higher moment energies, originally used in Additive Combinatorics, so that it would apply to problems in Discrete Geometry. This new approach leads to a variety of new results, such as (i) Improved bounds for the problem of distinct distances with local properties. (ii) Improved bounds for problems involving expanding polynomials in ${\mathbb R}[x,y]$ (Elekes-Ronyai type bounds) when one or two of the sets have structure. Higher moment energies seem...
October 18, 2014
Fix $A$, a family of subsets of natural numbers, and let $G_A(n)$ be the maximum cardinality of a subset of $\{1,2,..., n\}$ that does not have any subset in $A$. We consider the general problem of giving upper bounds on $G_A(n)$ and give some new upper bounds on some families that are closed under dilation. Specific examples include sets that do not contain any geometric progression of length $k$ with integer ratio, sets that do not contain any geometric progression of lengt...