ID: 2304.00943

Almost sure upper bound for random multiplicative functions

April 3, 2023

View on ArXiv
Rachid Caich
Mathematics
Number Theory
Probability

Let $\varepsilon >0$. Let $f$ be a Steinhaus or Rademacher random multiplicative function. We prove that we have almost surely, as $x \to +\infty$, $$ \sum_{n \leqslant x} f(n) \ll \sqrt{x} (\log_2 x)^{\frac{1}{4}+ \varepsilon}. $$ Thanks to Harper's Lower bound, this gives a sharp upper bound of the largest fluctuation of the quantity $\sum_{n \leqslant x} f(n)$.

Similar papers 1