February 25, 2020
The translation equivariance of convolutional layers enables convolutional neural networks to generalize well on image problems. While translation equivariance provides a powerful inductive bias for images, we often additionally desire equivariance to other transformations, such as rotations, especially for non-image data. We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group with a surjective expone...
April 10, 2020
Group equivariant neural networks have been explored in the past few years and are interesting from theoretical and practical standpoints. They leverage concepts from group representation theory, non-commutative harmonic analysis and differential geometry that do not often appear in machine learning. In practice, they have been shown to reduce sample and model complexity, notably in challenging tasks where input transformations such as arbitrary rotations are present. We begi...
December 4, 2020
State-of-the-art deep learning systems often require large amounts of data and computation. For this reason, leveraging known or unknown structure of the data is paramount. Convolutional neural networks (CNNs) are successful examples of this principle, their defining characteristic being the shift-equivariance. By sliding a filter over the input, when the input shifts, the response shifts by the same amount, exploiting the structure of natural images where semantic content is...
June 25, 2021
We introduce a novel architecture for graph networks which is equivariant to any transformation in the coordinate embeddings that preserves the distance between neighbouring nodes. In particular, it is equivariant to the Euclidean and conformal orthogonal groups in $n$-dimensions. Thanks to its equivariance properties, the proposed model is extremely more data efficient with respect to classical graph architectures and also intrinsically equipped with a better inductive bias....
October 4, 2023
Based on the theory of homogeneous spaces we derive \textit{geometrically optimal edge attributes} to be used within the flexible message passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sha...
January 24, 2023
We provide a full characterisation of all of the possible alternating group ($A_n$) equivariant neural networks whose layers are some tensor power of $\mathbb{R}^{n}$. In particular, we find a basis of matrices for the learnable, linear, $A_n$-equivariant layer functions between such tensor power spaces in the standard basis of $\mathbb{R}^{n}$. We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries.
December 12, 2022
Steerable convolutional neural networks (CNNs) provide a general framework for building neural networks equivariant to translations and transformations of an origin-preserving group $G$, such as reflections and rotations. They rely on standard convolutions with $G$-steerable kernels obtained by analytically solving the group-specific equivariance constraint imposed onto the kernel space. As the solution is tailored to a particular group $G$, implementing a kernel basis does n...
November 19, 2019
The big empirical success of group equivariant networks has led in recent years to the sprouting of a great variety of equivariant network architectures. A particular focus has thereby been on rotation and reflection equivariant CNNs for planar images. Here we give a general description of $E(2)$-equivariant convolutions in the framework of Steerable CNNs. The theory of Steerable CNNs thereby yields constraints on the convolution kernels which depend on group representations ...
October 6, 2023
This paper proposes an adjoint-equivariant neural network that takes Lie algebra data as input. Various types of equivariant neural networks have been proposed in the literature, which treat the input data as elements in a vector space carrying certain types of transformations. In comparison, we aim to process inputs that are transformations between vector spaces. The change of basis on transformation is described by conjugations, inducing the adjoint-equivariance relationshi...
September 14, 2021
Invariance under symmetry is an important problem in machine learning. Our paper looks specifically at equivariant neural networks where transformations of inputs yield homomorphic transformations of outputs. Here, steerable CNNs have emerged as the standard solution. An inherent problem of steerable representations is that general nonlinear layers break equivariance, thus restricting architectural choices. Our paper applies harmonic distortion analysis to illuminate the effe...