May 19, 2023
Reservoir computing is a highly efficient machine learning framework for processing temporal data by extracting features from the input signal and mapping them into higher dimensional spaces. Physical reservoir layers have been realized using spintronic oscillators, atomic switch networks, silicon photonic modules, ferroelectric transistors, and volatile memristors. However, these devices are intrinsically energy-dissipative due to their resistive nature, which leads to increased power consumption. Therefore, capacitive memory devices can provide a more energy-efficient approach. Here, we leverage volatile biomembrane-based memcapacitors that closely mimic certain short-term synaptic plasticity functions as reservoirs to solve classification tasks and analyze time-series data in simulation and experimentally. Our system achieves a 99.6% accuracy rate for spoken digit classification and a normalized mean square error of 7.81*10^{-4} in a second-order non-linear regression task. Furthermore, to showcase the device's real-time temporal data processing capability, we achieve 100% accuracy for a real-time epilepsy detection problem from an inputted electroencephalography (EEG) signal. Most importantly, we demonstrate that each memcapacitor consumes an average of 41.5 fJ of energy per spike, regardless of the selected input voltage pulse width, while maintaining an average power of 415 fW for a pulse width of 100 ms. These values are orders of magnitude lower than those achieved by state-of-the-art memristors used as reservoirs. Lastly, we believe the biocompatible, soft nature of our memcapacitor makes it highly suitable for computing and signal-processing applications in biological environments.
Similar papers 1
April 27, 2024
Reservoir computing is a brain-inspired machine learning framework for processing temporal data by mapping inputs into high-dimensional spaces. Physical reservoir computers (PRCs) leverage native fading memory and nonlinearity in physical substrates, including atomic switches, photonics, volatile memristors, and, recently, memcapacitors, to achieve efficient high-dimensional mapping. Traditional PRCs often consist of homogeneous device arrays, which rely on input encoding met...
December 1, 2021
Memristive systems and devices are potentially available for implementing reservoir computing (RC) systems applied to pattern recognition. However, the computational ability of memristive RC systems depends on intertwined factors such as system architectures and physical properties of memristive elements, which complicates identifying the key factor for system performance. Here we develop a simulation platform for RC with memristor device networks, which enables testing diffe...
October 25, 2023
Recent advancements in reservoir computing research have created a demand for analog devices with dynamics that can facilitate the physical implementation of reservoirs, promising faster information processing while consuming less energy and occupying a smaller area footprint. Studies have demonstrated that dynamic memristors, with nonlinear and short-term memory dynamics, are excellent candidates as information-processing devices or reservoirs for temporal classification and...
March 4, 2024
Reservoir computing (RC) offers a neuromorphic framework that is particularly effective for processing spatiotemporal signals. Known for its temporal processing prowess, RC significantly lowers training costs compared to conventional recurrent neural networks. A key component in its hardware deployment is the ability to generate dynamic reservoir states. Our research introduces a novel dual-memory RC system, integrating a short-term memory via a WOx-based memristor, capable o...
April 21, 2023
In this article, we introduce a new nanoscale electromechanical device -- a leaky memcapacitor -- and show that it may be useful for the hardware implementation of spiking neurons. The leaky memcapacitor is a movable-plate capacitor that becomes quite conductive when the plates come close to each other. The equivalent circuit of the leaky memcapacitor involves a memcapacitive and memristive system connected in parallel. In the leaky memcapacitor, the resistance and capacitanc...
November 29, 2024
Speech recognition is a key challenge in natural language processing, requiring low latency, efficient computation, and strong generalization for real-time applications. While software-based artificial neural networks (ANNs) excel at this task, they are computationally intensive and depend heavily on data pre-processing. Neuromorphic computing, with its low-latency and energy-efficient advantages, holds promise for audio classification. Memristive nanowire networks, combined ...
May 11, 2023
In conventional digital computers, data and information are represented in binary form and encoded in the steady states of transistors. They are then processed in a quasi-static way. However, with transistors approaching their physical limits and the von Neumann bottleneck, the rate of improvement in computing efficiency has slowed down. Therefore, drawing inspiration from the dynamic and adaptive properties of biological systems, research in neural morphology computing has g...
November 25, 2013
Unconventional computing explores multi-scale platforms connecting molecular-scale devices into networks for the development of scalable neuromorphic architectures, often based on new materials and components with new functionalities. We review some work investigating the functionalities of locally connected networks of different types of switching elements as computational substrates. In particular, we discuss reservoir computing with networks of nonlinear nanoscale componen...
Reservoir computing is a machine learning paradigm that uses a high-dimensional dynamical system, or \emph{reservoir}, to approximate and predict time series data. The scale, speed and power usage of reservoir computers could be enhanced by constructing reservoirs out of electronic circuits, and several experimental studies have demonstrated promise in this direction. However, designing quality reservoirs requires a precise understanding of how such circuits process and store...
September 25, 2024
Reservoir computing offers an energy-efficient alternative to deep neural networks (DNNs) by replacing complex hidden layers with a fixed nonlinear system and training only the final layer. This work investigates nanoelectromechanical system (NEMS) resonators for reservoir computing, utilizing inherent nonlinearities and the fading memory effect from NEMS's transient response. This approach transforms input data into a higher-dimensional space for effective classification. Th...