June 19, 2023
Mixture models are commonly used in applications with heterogeneity and overdispersion in the population, as they allow the identification of subpopulations. In the Bayesian framework, this entails the specification of suitable prior distributions for the weights and location parameters of the mixture. Widely used are Bayesian semi-parametric models based on mixtures with infinite or random number of components, such as Dirichlet process mixtures or mixtures with random number of components. Key in this context is the choice of the kernel for cluster identification. Despite their popularity, the flexibility of these models and prior distributions often does not translate into interpretability of the identified clusters. To overcome this issue, clustering methods based on repulsive mixtures have been recently proposed. The basic idea is to include a repulsive term in the prior distribution of the atoms of the mixture, which favours mixture locations far apart. This approach is increasingly popular and allows one to produce well-separated clusters, thus facilitating the interpretation of the results. However, the resulting models are usually not easy to handle due to the introduction of unknown normalising constants. Exploiting results from statistical mechanics, we propose in this work a novel class of repulsive prior distributions based on Gibbs measures. Specifically, we use Gibbs measures associated to joint distributions of eigenvalues of random matrices, which naturally possess a repulsive property. The proposed framework greatly simplifies the computations needed for the use of repulsive mixtures due to the availability of the normalising constant in closed form. We investigate theoretical properties of such class of prior distributions, and illustrate the novel class of priors and their properties, as well as their clustering performance, on benchmark datasets.
Similar papers 1
January 16, 2017
Employing nonparametric methods for density estimation has become routine in Bayesian statistical practice. Models based on discrete nonparametric priors such as Dirichlet Process Mixture (DPM) models are very attractive choices due to their flexibility and tractability. However, a common problem in fitting DPMs or other discrete models to data is that they tend to produce a large number of (sometimes) redundant clusters. In this work we propose a method that produces parsimo...
April 24, 2012
Discrete mixture models are routinely used for density estimation and clustering. While conducting inferences on the cluster-specific parameters, current frequentist and Bayesian methods often encounter problems when clusters are placed too close together to be scientifically meaningful. Current Bayesian practice generates component-specific parameters independently from a common prior, which tends to favor similar components and often leads to substantial probability assigne...
October 9, 2022
Mixture models are a standard tool in statistical analysis, widely used for density modeling and model-based clustering. Current approaches typically model the parameters of the mixture components as independent variables. This can result in overlapping or poorly separated clusters when either the number of clusters or the form of the mixture components is misspecified. Such model misspecification can undermine the interpretability and simplicity of these mixture models. To a...
March 27, 2017
We develop a general class of Bayesian repulsive Gaussian mixture models that encourage well-separated clusters, aiming at reducing potentially redundant components produced by independent priors for locations (such as the Dirichlet process). The asymptotic results for the posterior distribution of the proposed models are derived, including posterior consistency and posterior contraction rate in the context of nonparametric density estimation. More importantly, we show that c...
January 14, 2015
The parsimonious Gaussian mixture models, which exploit an eigenvalue decomposition of the group covariance matrices of the Gaussian mixture, have shown their success in particular in cluster analysis. Their estimation is in general performed by maximum likelihood estimation and has also been considered from a parametric Bayesian prospective. We propose new Dirichlet Process Parsimonious mixtures (DPPM) which represent a Bayesian nonparametric formulation of these parsimoniou...
November 12, 2020
Repulsive mixture models have recently gained popularity for Bayesian cluster detection. Compared to more traditional mixture models, repulsive mixture models produce a smaller number of well separated clusters. The most commonly used methods for posterior inference either require to fix a priori the number of components or are based on reversible jump MCMC computation. We present a general framework for mixture models, when the prior of the `cluster centres' is a finite repu...
February 17, 2023
The study of almost surely discrete random probability measures is an active line of research in Bayesian nonparametrics. The idea of assuming interaction across the atoms of the random probability measure has recently spurred significant interest in the context of Bayesian mixture models. This allows the definition of priors that encourage well separated and interpretable clusters. In this work, we provide a unified framework for the construction and the Bayesian analysis of...
February 8, 2022
The Dirichlet Process Mixture Model (DPMM) is a Bayesian non-parametric approach widely used for density estimation and clustering. In this manuscript, we study the choice of prior for the variance or precision matrix when Gaussian kernels are adopted. Typically, in the relevant literature, the assessment of mixture models is done by considering observations in a space of only a handful of dimensions. Instead, we are concerned with more realistic problems of higher dimensiona...
April 7, 2020
The mixture extension of exponential family principal component analysis (EPCA) was designed to encode much more structural information about data distribution than the traditional EPCA does. For example, due to the linearity of EPCA's essential form, nonlinear cluster structures cannot be easily handled, but they are explicitly modeled by the mixing extensions. However, the traditional mixture of local EPCAs has the problem of model redundancy, i.e., overlaps among mixing co...
May 6, 2020
Non-Gaussian mixture models are gaining increasing attention for mixture model-based clustering particularly when dealing with data that exhibit features such as skewness and heavy tails. Here, such a mixture distribution is presented, based on the multivariate normal inverse Gaussian (MNIG) distribution. For parameter estimation of the mixture, a Bayesian approach via Gibbs sampler is used; for this, a novel approach to simulate univariate generalized inverse Gaussian random...